Python 非極大值抑制(NMS)的四種實現(xiàn)詳解
方法1:純python語言實現(xiàn):簡介方便、速度慢
方法2:直接利用Cython模塊編譯
方法3:先將全部變量定義為靜態(tài)類型,再利用Cython模塊編譯
方法4:在方法3的基礎(chǔ)上再加入cuda加速模塊, 再利用Cython模塊編譯,即利用gpu加速
一. 幾點(diǎn)說明
1. 簡單說明Cython:
Cython是一個快速生成Python擴(kuò)展模塊的工具,從語法層面上來講是Python語法和C語言語法的混血,當(dāng)Python性能遇到瓶頸時,Cython直接將C的原生速度植入Python程序,這樣使Python程序無需使用C重寫,能快速整合原有的Python程序,這樣使得開發(fā)效率和執(zhí)行效率都有很大的提高,而這些中間的部分,都是Cython幫我們做了。
2. 簡單介紹NMS:
Faster-RCNN中有兩處使用NMS,第一處是訓(xùn)練+預(yù)測的時候,利用ProposalCreator來生成proposal的時候,因為只需要一部分proposal,所以利用NMS進(jìn)行篩選。第二處使用是預(yù)測的時候,當(dāng)?shù)玫?00個分類與坐標(biāo)偏移結(jié)果的時候,需要對每個類別逐一進(jìn)行非極大值抑制。也許有人問為什么對于每個類別不直接取置信度最高的那一個?因為一張圖中某個類別可能不止一個,例如一張圖中有多個人,直接取最高置信度的只能預(yù)測其中的一個人,而通過NMS理想情況下可以使得每個人(每類中的每個個體)都會有且僅有一個bbox框。
二. 四種方法實現(xiàn)
1. 純python實現(xiàn):nms_py.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon May 7 21:45:37 2018 @author: lps """ import numpy as np boxes=np.array([[100,100,210,210,0.72], [250,250,420,420,0.8], [220,220,320,330,0.92], [100,100,210,210,0.72], [230,240,325,330,0.81], [220,230,315,340,0.9]]) def py_cpu_nms(dets, thresh): # dets:(m,5) thresh:scaler x1 = dets[:,0] y1 = dets[:,1] x2 = dets[:,2] y2 = dets[:,3] areas = (y2-y1+1) * (x2-x1+1) scores = dets[:,4] keep = [] index = scores.argsort()[::-1] while index.size >0: i = index[0] # every time the first is the biggst, and add it directly keep.append(i) x11 = np.maximum(x1[i], x1[index[1:]]) # calculate the points of overlap y11 = np.maximum(y1[i], y1[index[1:]]) x22 = np.minimum(x2[i], x2[index[1:]]) y22 = np.minimum(y2[i], y2[index[1:]]) w = np.maximum(0, x22-x11+1) # the weights of overlap h = np.maximum(0, y22-y11+1) # the height of overlap overlaps = w*h ious = overlaps / (areas[i]+areas[index[1:]] - overlaps) idx = np.where(ious<=thresh)[0] index = index[idx+1]# because index start from 1 return keep import matplotlib.pyplot as plt def plot_bbox(dets, c='k'): x1 = dets[:,0] y1 = dets[:,1] x2 = dets[:,2] y2 = dets[:,3] plt.plot([x1,x2], [y1,y1], c) plt.plot([x1,x1], [y1,y2], c) plt.plot([x1,x2], [y2,y2], c) plt.plot([x2,x2], [y1,y2], c) plt.title("after nms") plot_bbox(boxes,'k')# before nms keep = py_cpu_nms(boxes, thresh=0.7) plot_bbox(boxes[keep], 'r')# after nms
結(jié)果大致這樣:
新建nms文件夾,將nms_py.py 和__init__.py(空)文件放在其內(nèi)成為包,可以調(diào)用。然后在nms文件夾外新建測試運(yùn)行時間腳本 test_num.py:
import numpy as np import time from nms.nums_py import py_cpu_nms # for cpu #from nms.gpu_nms import gpu_nms# for gpu np.random.seed( 1 )# keep fixed num_rois = 6000 minxy = np.random.randint(50,145,size=(num_rois ,2)) maxxy = np.random.randint(150,200,size=(num_rois ,2)) score = 0.8*np.random.random_sample((num_rois ,1))+0.2 boxes_new = np.concatenate((minxy,maxxy,score), axis=1).astype(np.float32) def nms_test_time(boxes_new): thresh = [0.7,0.8,0.9] T = 50 for i in range(len(thresh)): since = time.time() for t in range(T): keep = py_cpu_nms(boxes_new, thresh=thresh[i]) # for cpu #keep = gpu_nms(boxes_new, thresh=thresh[i]) # for gpu print("thresh={:.1f}, time wastes:{:.4f}".format(thresh[i], (time.time()-since)/T)) return keep if __name__ =="__main__": nms_test_time(boxes_new)
測試數(shù)據(jù)為6000個初始的rois,并設(shè)置nms閾值為0.7~0.9。閾值越大越慢,因為滿足小于閾值的roi越多,需要循環(huán)的次數(shù)也越多。對每個閾值循環(huán)執(zhí)行NMS 50次求平均:
直接運(yùn)行得到運(yùn)行時間:
thresh=0.7, time wastes:0.0287
thresh=0.8, time wastes:0.1057
thresh=0.9, time wastes:0.4204
2.直接利用Cython模塊編譯:nms_py1.pyx
首先復(fù)制一份nms_py.py并重命名為nms_py1.pyx,pyx即為Cython文件。然后在nms文件夾下新建setup1.py:
from distutils.core import setup from Cython.Build import cythonize setup( name = 'nms_module', ext_modules = cythonize('nums_py1.pyx'), )
下面開始生成動態(tài)鏈接庫:在終端執(zhí)行:
python3 setup1.py build
然后在當(dāng)前目錄會生成nums_py1.c,即C源代碼,然后在nms/build/lib.linux-x86_64-3.5下會生成nums_py1.cpython-35m-x86_64-linux-gnu.so這一動態(tài)鏈接庫,將其復(fù)制一份至nms文件夾下,則現(xiàn)在可以在測試腳本中進(jìn)行測試了:只需將測試腳本中的 from nms.nums_py import py_cpu_nms 改為 from nms.nums1_py import py_cpu_nms 即可。因為pyx是不可以直接執(zhí)行的,只有build完成后才可以。
運(yùn)行測試腳本得到以下結(jié)果:
thresh=0.7, time wastes:0.0272
thresh=0.8, time wastes:0.1038
thresh=0.9, time wastes:0.4184
發(fā)現(xiàn)與純python速度相比僅有微小提升,下面再利用第3種方法。
3. 更改變量定義后再利用Cython模塊編譯:nms_py2.pyx
import numpy as np cimport numpy as np # #boxes=np.array([[100,100,210,210,0.72], # [250,250,420,420,0.8], # [220,220,320,330,0.92], # [100,100,210,210,0.72], # [230,240,325,330,0.81], # [220,230,315,340,0.9]]) # cdef inline np.float32_t max(np.float32_t a, np.float32_t b): return a if a >= b else b cdef inline np.float32_t min(np.float32_t a, np.float32_t b): return a if a <= b else b def py_cpu_nms(np.ndarray[np.float32_t,ndim=2] dets, np.float thresh): # dets:(m,5) thresh:scaler cdef np.ndarray[np.float32_t, ndim=1] x1 = dets[:,0] cdef np.ndarray[np.float32_t, ndim=1] y1 = dets[:,1] cdef np.ndarray[np.float32_t, ndim=1] x2 = dets[:,2] cdef np.ndarray[np.float32_t, ndim=1] y2 = dets[:,3] cdef np.ndarray[np.float32_t, ndim=1] scores = dets[:, 4] cdef np.ndarray[np.float32_t, ndim=1] areas = (y2-y1+1) * (x2-x1+1) cdef np.ndarray[np.int_t, ndim=1] index = scores.argsort()[::-1] # can be rewriten keep = [] cdef int ndets = dets.shape[0] cdef np.ndarray[np.int_t, ndim=1] suppressed = np.zeros(ndets, dtype=np.int) cdef int _i, _j cdef int i, j cdef np.float32_t ix1, iy1, ix2, iy2, iarea cdef np.float32_t w, h cdef np.float32_t overlap, ious j=0 for _i in range(ndets): i = index[_i] if suppressed[i] == 1: continue keep.append(i) ix1 = x1[i] iy1 = y1[i] ix2 = x2[i] iy2 = y2[i] iarea = areas[i] for _j in range(_i+1, ndets): j = index[_j] if suppressed[j] == 1: continue xx1 = max(ix1, x1[j]) yy1 = max(iy1, y1[j]) xx2 = min(ix2, x2[j]) yy2 = min(iy2, y2[j]) w = max(0.0, xx2-xx1+1) h = max(0.0, yy2-yy1+1) overlap = w*h ious = overlap / (iarea + areas[j] - overlap) if ious>thresh: suppressed[j] = 1 return keep import matplotlib.pyplot as plt def plot_bbox(dets, c='k'): x1 = dets[:,0] y1 = dets[:,1] x2 = dets[:,2] y2 = dets[:,3] plt.plot([x1,x2], [y1,y1], c) plt.plot([x1,x1], [y1,y2], c) plt.plot([x1,x2], [y2,y2], c) plt.plot([x2,x2], [y1,y2], c)
其中變量靜態(tài)類型可以極大的提高效率,原因是參與計算的主要是變量,主要的變化是將變量利用cdef定義。
然后同上建立setup2.py:
from distutils.core import setup from Cython.Build import cythonize setup( name = 'nms_module', ext_modules = cythonize('nums_py2.pyx'), )
build后將動態(tài)庫.so拷貝到nms文件夾下,然后同上修改測試腳本,執(zhí)行測試腳本:
thresh=0.7, time wastes:0.0019
thresh=0.8, time wastes:0.0028
thresh=0.9, time wastes:0.0036
發(fā)現(xiàn)速度相較于純python分別提升了15倍、38倍、118倍!
4. 在方法3的基礎(chǔ)上利用GPU:gpu_nms.pyx
import numpy as np cimport numpy as np assert sizeof(int) == sizeof(np.int32_t) cdef extern from "gpu_nms.hpp": void _nms(np.int32_t*, int*, np.float32_t*, int, int, float, int) def gpu_nms(np.ndarray[np.float32_t, ndim=2] dets, np.float thresh, np.int32_t device_id=0): cdef int boxes_num = dets.shape[0] cdef int boxes_dim = dets.shape[1] cdef int num_out cdef np.ndarray[np.int32_t, ndim=1] \ keep = np.zeros(boxes_num, dtype=np.int32) cdef np.ndarray[np.float32_t, ndim=1] \ scores = dets[:, 4] cdef np.ndarray[np.int_t, ndim=1] \ order = scores.argsort()[::-1] cdef np.ndarray[np.float32_t, ndim=2] \ sorted_dets = dets[order, :] _nms(&keep[0], &num_out, &sorted_dets[0, 0], boxes_num, boxes_dim, thresh, device_id) keep = keep[:num_out] return list(order[keep])
再建立文件nms_gpu.hpp:
void _nms(int* keep_out, int* num_out, const float* boxes_host, int boxes_num, int boxes_dim, float nms_overlap_thresh, int device_id);
和nms_kernel.cu文件:
#include "gpu_nms.hpp" #include <vector> #include <iostream> #define CUDA_CHECK(condition) \ /* Code block avoids redefinition of cudaError_t error */ \ do { \ cudaError_t error = condition; \ if (error != cudaSuccess) { \ std::cout << cudaGetErrorString(error) << std::endl; \ } \ } while (0) #define DIVUP(m,n) ((m) / (n) + ((m) % (n) > 0)) int const threadsPerBlock = sizeof(unsigned long long) * 8; __device__ inline float devIoU(float const * const a, float const * const b) { float left = max(a[0], b[0]), right = min(a[2], b[2]); float top = max(a[1], b[1]), bottom = min(a[3], b[3]); float width = max(right - left + 1, 0.f), height = max(bottom - top + 1, 0.f); float interS = width * height; float Sa = (a[2] - a[0] + 1) * (a[3] - a[1] + 1); float Sb = (b[2] - b[0] + 1) * (b[3] - b[1] + 1); return interS / (Sa + Sb - interS); } __global__ void nms_kernel(const int n_boxes, const float nms_overlap_thresh,const float *dev_boxes, unsigned long long *dev_mask) { const int row_start = blockIdx.y; const int col_start = blockIdx.x; // if (row_start > col_start) return; const int row_size = min(n_boxes - row_start * threadsPerBlock, threadsPerBlock); const int col_size = min(n_boxes - col_start * threadsPerBlock, threadsPerBlock); __shared__ float block_boxes[threadsPerBlock * 5]; if (threadIdx.x < col_size) { block_boxes[threadIdx.x * 5 + 0] = dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 0]; block_boxes[threadIdx.x * 5 + 1] = dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 1]; block_boxes[threadIdx.x * 5 + 2] = dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 2]; block_boxes[threadIdx.x * 5 + 3] = dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 3]; block_boxes[threadIdx.x * 5 + 4] = dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 4]; } __syncthreads(); if (threadIdx.x < row_size) { const int cur_box_idx = threadsPerBlock * row_start + threadIdx.x; const float *cur_box = dev_boxes + cur_box_idx * 5; int i = 0; unsigned long long t = 0; int start = 0; if (row_start == col_start) { start = threadIdx.x + 1; } for (i = start; i < col_size; i++) { if (devIoU(cur_box, block_boxes + i * 5) > nms_overlap_thresh) { t |= 1ULL << i; } } const int col_blocks = DIVUP(n_boxes, threadsPerBlock); dev_mask[cur_box_idx * col_blocks + col_start] = t; } } void _set_device(int device_id) { int current_device; CUDA_CHECK(cudaGetDevice(¤t_device)); if (current_device == device_id) { return; } // The call to cudaSetDevice must come before any calls to Get, which // may perform initialization using the GPU. CUDA_CHECK(cudaSetDevice(device_id)); } void _nms(int* keep_out, int* num_out, const float* boxes_host, int boxes_num, int boxes_dim, float nms_overlap_thresh, int device_id) { _set_device(device_id); float* boxes_dev = NULL; unsigned long long* mask_dev = NULL; const int col_blocks = DIVUP(boxes_num, threadsPerBlock); CUDA_CHECK(cudaMalloc(&boxes_dev,boxes_num * boxes_dim * sizeof(float))); CUDA_CHECK(cudaMemcpy(boxes_dev,boxes_host,boxes_num * boxes_dim * sizeof(float),cudaMemcpyHostToDevice)); CUDA_CHECK(cudaMalloc(&mask_dev,boxes_num * col_blocks * sizeof(unsigned long long))); dim3 blocks(DIVUP(boxes_num, threadsPerBlock), DIVUP(boxes_num, threadsPerBlock)); dim3 threads(threadsPerBlock); nms_kernel<<<blocks, threads>>>(boxes_num, nms_overlap_thresh, boxes_dev, mask_dev); std::vector<unsigned long long> mask_host(boxes_num * col_blocks); CUDA_CHECK(cudaMemcpy(&mask_host[0],mask_dev,sizeof(unsigned long long) * boxes_num * col_blocks,cudaMemcpyDeviceToHost)); std::vector<unsigned long long> remv(col_blocks); memset(&remv[0], 0, sizeof(unsigned long long) * col_blocks); int num_to_keep = 0; for (int i = 0; i < boxes_num; i++) { int nblock = i / threadsPerBlock; int inblock = i % threadsPerBlock; if (!(remv[nblock] & (1ULL << inblock))) { keep_out[num_to_keep++] = i; unsigned long long *p = &mask_host[0] + i * col_blocks; for (int j = nblock; j < col_blocks; j++) { remv[j] |= p[j]; } } } *num_out = num_to_keep; CUDA_CHECK(cudaFree(boxes_dev)); CUDA_CHECK(cudaFree(mask_dev)); }
然后在nms文件夾外建立setup3.py:
from distutils.core import setup from Cython.Build import cythonize from distutils.extension import Extension from Cython.Distutils import build_ext import subprocess import numpy as np import os from os.path import join as pjoin def find_in_path(name, path): "Find a file in a search path" # Adapted fom # http://code.activestate.com/recipes/52224-find-a-file-given-a-search-path/ for dir in path.split(os.pathsep): binpath = pjoin(dir, name) if os.path.exists(binpath): return os.path.abspath(binpath) return None def locate_cuda(): """Locate the CUDA environment on the system Returns a dict with keys 'home', 'nvcc', 'include', and 'lib64' and values giving the absolute path to each directory. Starts by looking for the CUDAHOME env variable. If not found, everything is based on finding 'nvcc' in the PATH. """ # first check if the CUDAHOME env variable is in use if 'CUDAHOME' in os.environ: home = os.environ['CUDAHOME'] nvcc = pjoin(home, 'bin', 'nvcc') else: # otherwise, search the PATH for NVCC default_path = pjoin(os.sep, 'usr', 'local', 'cuda', 'bin') nvcc = find_in_path('nvcc', os.environ['PATH'] + os.pathsep + default_path) if nvcc is None: raise EnvironmentError('The nvcc binary could not be ' 'located in your $PATH. Either add it to your path, or set $CUDAHOME') home = os.path.dirname(os.path.dirname(nvcc)) cudaconfig = {'home':home, 'nvcc':nvcc, 'include': pjoin(home, 'include'), 'lib64': pjoin(home, 'lib64')} for k, v in cudaconfig.items(): if not os.path.exists(v): raise EnvironmentError('The CUDA %s path could not be located in %s' % (k, v)) return cudaconfig CUDA = locate_cuda() try: numpy_include = np.get_include() except AttributeError: numpy_include = np.get_numpy_include() def customize_compiler_for_nvcc(self): """inject deep into distutils to customize how the dispatch to gcc/nvcc works. If you subclass UnixCCompiler, it's not trivial to get your subclass injected in, and still have the right customizations (i.e. distutils.sysconfig.customize_compiler) run on it. So instead of going the OO route, I have this. Note, it's kindof like a wierd functional subclassing going on.""" # tell the compiler it can processes .cu self.src_extensions.append('.cu') # save references to the default compiler_so and _comple methods default_compiler_so = self.compiler_so super = self._compile # now redefine the _compile method. This gets executed for each # object but distutils doesn't have the ability to change compilers # based on source extension: we add it. def _compile(obj, src, ext, cc_args, extra_postargs, pp_opts): if os.path.splitext(src)[1] == '.cu': # use the cuda for .cu files self.set_executable('compiler_so', CUDA['nvcc']) # use only a subset of the extra_postargs, which are 1-1 translated # from the extra_compile_args in the Extension class postargs = extra_postargs['nvcc'] else: postargs = extra_postargs['gcc'] super(obj, src, ext, cc_args, postargs, pp_opts) # reset the default compiler_so, which we might have changed for cuda self.compiler_so = default_compiler_so # inject our redefined _compile method into the class self._compile = _compile # run the customize_compiler class custom_build_ext(build_ext): def build_extensions(self): customize_compiler_for_nvcc(self.compiler) build_ext.build_extensions(self) ext_modules = [Extension('nms.gpu_nms', ['nms/nms_kernel.cu', 'nms/gpu_nms.pyx'], library_dirs=[CUDA['lib64']], libraries=['cudart'], language='c++', runtime_library_dirs=[CUDA['lib64']], # this syntax is specific to this build system # we're only going to use certain compiler args with nvcc and not with # gcc the implementation of this trick is in customize_compiler() below extra_compile_args={'gcc': ["-Wno-unused-function"], 'nvcc': ['-arch=sm_35', '--ptxas-options=-v', '-c', '--compiler-options', "'-fPIC'"]}, include_dirs = [numpy_include, CUDA['include']] )] setup( name='fast_rcnn', ext_modules=ext_modules, # inject our custom trigger cmdclass={'build_ext': custom_build_ext}, )
然后同上修改測試腳本,執(zhí)行測試腳本:
import numpy as np import time #from nms.nums_py2 import py_cpu_nms # for cpu from nms.gpu_nms import gpu_nms# for gpu np.random.seed( 1 )# keep fixed num_rois = 6000 minxy = np.random.randint(50,145,size=(num_rois ,2)) maxxy = np.random.randint(150,200,size=(num_rois ,2)) score = 0.8*np.random.random_sample((num_rois ,1))+0.2 boxes_new = np.concatenate((minxy,maxxy,score), axis=1).astype(np.float32) def nms_test_time(boxes_new): thresh = [0.7,0.8,0.9] T = 50 for i in range(len(thresh)): since = time.time() for t in range(T): #keep = py_cpu_nms(boxes_new, thresh=thresh[i]) # for cpu keep = gpu_nms(boxes_new, thresh=thresh[i]) # for gpu print("thresh={:.1f}, time wastes:{:.4f}".format(thresh[i], (time.time()-since)/T)) return keep if __name__ =="__main__": nms_test_time(boxes_new)
結(jié)果:
thresh=0.7, time wastes:0.0120
thresh=0.8, time wastes:0.0063
thresh=0.9, time wastes:0.0071
發(fā)現(xiàn)比方法3還要慢一點(diǎn),應(yīng)該是計算量較小,而且時間損耗在調(diào)用GPU上吧。如果在Faster-RCNN中利方法4肯定是最快的,畢竟是rbg的實現(xiàn),暫時來看方法3也足夠了
到此這篇關(guān)于Python 非極大值抑制(NMS)的四種實現(xiàn)詳解的文章就介紹到這了,更多相關(guān)Python NMS 非極大值抑制內(nèi)容請搜索本站以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持本站!
版權(quán)聲明:本站文章來源標(biāo)注為YINGSOO的內(nèi)容版權(quán)均為本站所有,歡迎引用、轉(zhuǎn)載,請保持原文完整并注明來源及原文鏈接。禁止復(fù)制或仿造本網(wǎng)站,禁止在非www.sddonglingsh.com所屬的服務(wù)器上建立鏡像,否則將依法追究法律責(zé)任。本站部分內(nèi)容來源于網(wǎng)友推薦、互聯(lián)網(wǎng)收集整理而來,僅供學(xué)習(xí)參考,不代表本站立場,如有內(nèi)容涉嫌侵權(quán),請聯(lián)系alex-e#qq.com處理。