人妖在线一区,国产日韩欧美一区二区综合在线,国产啪精品视频网站免费,欧美内射深插日本少妇

新聞動態(tài)

解析Linux高性能網(wǎng)絡(luò)IO和Reactor模型

發(fā)布日期:2022-01-01 15:55 | 文章來源:腳本之家

一、基本概念介紹

  • 進程(線程)切換:所有系統(tǒng)都有調(diào)度進程的能力,它可以掛起一個當前正在運行的進程,并恢復之前掛起的進程
  • 進程(線程)的阻塞:運行中的進程,有時會等待其他事件的執(zhí)行完成,比如等待鎖,請求I/O的讀寫;進程在等待過程會被系統(tǒng)自動執(zhí)行阻塞,此時進程不占用CPU
  • 文件描述符:在Linux,文件描述符是一個用于表述指向文件引用的抽象化概念,它是一個非負整數(shù)。當程序打開一個現(xiàn)有文件或者創(chuàng)建一個新文件時,內(nèi)核向進程返回一個文件描述符
  • linux信號處理:Linux進程運行中可以接受來自系統(tǒng)或者進程的信號值,然后根據(jù)信號值去運行相應(yīng)捕捉函數(shù);信號相當于是硬件中斷的軟件模擬

在零拷貝機制篇章已介紹過 用戶空間和內(nèi)核空間和緩沖區(qū),這里就省略了

二、網(wǎng)絡(luò)IO的讀寫過程

  • 當在用戶空間發(fā)起對socket套接字的讀操作時,會導致上下文切換,用戶進程阻塞(R1)等待網(wǎng)絡(luò)數(shù)據(jù)流到來,從網(wǎng)卡復制到內(nèi)核;(R2)然后從內(nèi)核緩沖區(qū)向用戶進程緩沖區(qū)復制。此時進程切換恢復,處理拿到的數(shù)據(jù)
  • 這里我們給socket讀操作的第一階段起個別名R1,第二階段稱為R2
  • 當在用戶空間發(fā)起對socket的send操作時,導致上下文切換,用戶進程阻塞等待(1)數(shù)據(jù)從用戶進程緩沖區(qū)復制到內(nèi)核緩沖區(qū)。數(shù)據(jù)copy完成,此時進程切換恢復

三、Linux五種網(wǎng)絡(luò)IO模型

3.1、阻塞式I/O (blocking IO)

ssize_t recvfrom(int sockfd,void *buf,size_t len,unsigned int flags, struct sockaddr *from,socket_t *fromlen);

  • 最基礎(chǔ)的I/O模型就是阻塞I/O模型,也是最簡單的模型。所有的操作都是順序執(zhí)行的
  • 阻塞IO模型中,用戶空間的應(yīng)用程序執(zhí)行一個系統(tǒng)調(diào)用(recvform),會導致應(yīng)用程序被阻塞,直到內(nèi)核緩沖區(qū)的數(shù)據(jù)準備好,并且將數(shù)據(jù)從內(nèi)核復制到用戶進程。最后進程才被系統(tǒng)喚醒處理數(shù)據(jù)
  • 在R1、R2連續(xù)兩個階段,整個進程都被阻塞

3.2、非阻塞式I/O (nonblocking IO)

  • 非阻塞IO也是一種同步IO。它是基于輪詢(polling)機制實現(xiàn),在這種模型中,套接字是以非阻塞的形式打開的。就是說I/O操作不會立即完成,但是I/O操作會返回一個錯誤代碼(EWOULDBLOCK),提示操作未完成
  • 輪詢檢查內(nèi)核數(shù)據(jù),如果數(shù)據(jù)未準備好,則返回EWOULDBLOCK。進程再繼續(xù)發(fā)起recvfrom調(diào)用,當然你可以暫停去做其他事
  • 直到內(nèi)核數(shù)據(jù)準備好,再拷貝數(shù)據(jù)到用戶空間,然后進程拿到非錯誤碼數(shù)據(jù),接著進行數(shù)據(jù)處理。需要注意,拷貝數(shù)據(jù)整個過程,進程仍然是屬于阻塞的狀態(tài)
  • 進程在R2階段阻塞,雖然在R1階段沒有被阻塞,但是需要不斷輪詢

3.3、多路復用I/O (IO multiplexing)

  • 一般后端服務(wù)都會存在大量的socket連接,如果一次能查詢多個套接字的讀寫狀態(tài),若有任意一個準備好,那就去處理它,效率會高很多。這就是“I/O多路復用”,多路是指多個socket套接字,復用是指復用同一個進程
  • linux提供了select、poll、epoll等多路復用I/O的實現(xiàn)方式
  • select或poll、epoll是阻塞調(diào)用
  • 與阻塞IO不同,select不會等到socket數(shù)據(jù)全部到達再處理,而是有了一部分socket數(shù)據(jù)準備好就會恢復用戶進程來處理。怎么知道有一部分數(shù)據(jù)在內(nèi)核準備好了呢?答案:交給了系統(tǒng)系統(tǒng)處理吧
  • 進程在R1、R2階段也是阻塞;不過在R1階段有個技巧,在多進程、多線程編程的環(huán)境下,我們可以只分配一個進程(線程)去阻塞調(diào)用select,其他線程不就可以解放了嗎

3.4、信號驅(qū)動式I/O (SIGIO)

  • 需要提供一個信號捕捉函數(shù),并和socket套接字關(guān)聯(lián);發(fā)起sigaction調(diào)用之后進程就能解放去處理其他事
  • 當數(shù)據(jù)在內(nèi)核準備好后,進程會收到一個SIGIO信號,繼而中斷去運行信號捕捉函數(shù),調(diào)用recvfrom把數(shù)據(jù)從內(nèi)核讀取到用戶空間,再處理數(shù)據(jù)
  • 可以看出用戶進程是不會阻塞在R1階段,但R2還是會阻塞等待

3.5、異步IO (POSIX的aio_系列函數(shù))

  • 相對同步IO,異步IO在用戶進程發(fā)起異步讀(aio_read)系統(tǒng)調(diào)用之后,無論內(nèi)核緩沖區(qū)數(shù)據(jù)是否準備好,都不會阻塞當前進程;在aio_read系統(tǒng)調(diào)用返回后進程就可以處理其他邏輯
  • socket數(shù)據(jù)在內(nèi)核就緒時,系統(tǒng)直接把數(shù)據(jù)從內(nèi)核復制到用戶空間,然后再使用信號通知用戶進程
  • R1、R2兩階段時進程都是非阻塞的

四、多路復用IO深入理解一波

4.1、select

int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout);

1)使用copy_from_user從用戶空間拷貝fd_set到內(nèi)核空間

2)注冊回調(diào)函數(shù)__pollwait

3)遍歷所有fd,調(diào)用其對應(yīng)的poll方法(對于socket,這個poll方法是sock_poll,sock_poll根據(jù)情況會調(diào)用到tcp_poll,udp_poll或者datagram_poll)

4)以tcp_poll為例,其核心實現(xiàn)就是__pollwait,也就是上面注冊的回調(diào)函數(shù)

5)__pollwait的主要工作就是把current(當前進程)掛到設(shè)備的等待隊列中,不同的設(shè)備有不同的等待隊列,對于tcp_poll來說,其等待隊列是sk->sk_sleep(注意把進程掛到等待隊列中并不代表進程已經(jīng)睡眠了)。在設(shè)備收到一條消息(網(wǎng)絡(luò)設(shè)備)或填寫完文件數(shù)據(jù)(磁盤設(shè)備)后,會喚醒設(shè)備等待隊列上睡眠的進程,這時current便被喚醒了

6)poll方法返回時會返回一個描述讀寫操作是否就緒的mask掩碼,根據(jù)這個mask掩碼給fd_set賦值

7)如果遍歷完所有的fd,還沒有返回一個可讀寫的mask掩碼,則會調(diào)用schedule_timeout是調(diào)用select的進程(也就是current)進入睡眠

8) 當設(shè)備驅(qū)動發(fā)生自身資源可讀寫后,會喚醒其等待隊列上睡眠的進程。如果超過一定的超時時間(timeout指定),還是沒人喚醒,則調(diào)用select的進程會重新被喚醒獲得CPU,進而重新遍歷fd,判斷有沒有就緒的fd

9)把fd_set從內(nèi)核空間拷貝到用戶空間

select的缺點:

  • 每次調(diào)用select,都需要把fd集合從用戶態(tài)拷貝到內(nèi)核態(tài),這個開銷在fd很多時會很大
  • 同時每次調(diào)用select都需要在內(nèi)核遍歷傳遞進來的所有fd,這個開銷在fd很多時也很大
  • select支持的文件描述符數(shù)量太小了,默認是1024

4.2、epoll

int epoll_create(int size);  
int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);  
int epoll_wait(int epfd, struct epoll_event *events,int maxevents, int timeout); 
  • 調(diào)用epoll_create,會在內(nèi)核cache里建個紅黑樹用于存儲以后epoll_ctl傳來的socket,同時也會再建立一個rdllist雙向鏈表用于存儲準備就緒的事件。當epoll_wait調(diào)用時,僅查看這個rdllist雙向鏈表數(shù)據(jù)即可
  • epoll_ctl在向epoll對象中添加、修改、刪除事件時,是在rbr紅黑樹中操作的,非???/li>
  • 添加到epoll中的事件會與設(shè)備(如網(wǎng)卡)建立回調(diào)關(guān)系,設(shè)備上相應(yīng)事件的發(fā)生時會調(diào)用回調(diào)方法,把事件加進rdllist雙向鏈表中;這個回調(diào)方法在內(nèi)核中叫做ep_poll_callback

epoll的兩種觸發(fā)模式:

epoll有EPOLLLT和EPOLLET兩種觸發(fā)模式,LT是默認的模式,ET是“高速”模式(只支持no-block socket)

  • LT(水平觸發(fā))模式下,只要這個文件描述符還有數(shù)據(jù)可讀,每次epoll_wait都會觸發(fā)它的讀事件
  • ET(邊緣觸發(fā))模式下,檢測到有I/O事件時,通過 epoll_wait 調(diào)用會得到有事件通知的文件描述符,對于文件描述符,如可讀,則必須將該文件描述符一直讀到空(或者返回EWOULDBLOCK),否則下次的epoll_wait不會觸發(fā)該事件

4.3、epoll相比select的優(yōu)點

解決select三個缺點:

  • 對于第一個缺點:epoll的解決方案在epoll_ctl函數(shù)中。每次注冊新的事件到epoll句柄中時(在epoll_ctl中指定EPOLL_CTL_ADD),會把所有的fd拷貝進內(nèi)核,而不是在epoll_wait的時候重復拷貝。epoll保證了每個fd在整個過程中只會拷貝一次(epoll_wait不需要復制)
  • 對于第二個缺點:epoll為每個fd指定一個回調(diào)函數(shù),當設(shè)備就緒,喚醒等待隊列上的等待者時,就會調(diào)用這個回調(diào)函數(shù),而這個回調(diào)函數(shù)會把就緒的fd加入一個就緒鏈表。epoll_wait的工作實際上就是在這個就緒鏈表中查看有沒有就緒的fd(不需要遍歷)
  • 對于第三個缺點:epoll沒有這個限制,它所支持的FD上限是最大可以打開文件的數(shù)目,這個數(shù)字一般遠大于2048,舉個例子,在1GB內(nèi)存的機器上大約是10萬左右,一般來說這個數(shù)目和系統(tǒng)內(nèi)存關(guān)系很大

epoll的高性能:

  • epoll使用了紅黑樹來保存需要監(jiān)聽的文件描述符事件,epoll_ctl增刪改操作快速
  • epoll不需要遍歷就能獲取就緒fd,直接返回就緒鏈表即可
  • linux2.6 之后使用了mmap技術(shù),數(shù)據(jù)不在需要從內(nèi)核復制到用戶空間,零拷貝

4.4、關(guān)于epoll的IO模型是同步異步的疑問

概念定義:

  • 同步I/O操作:導致請求進程阻塞,直到I/O操作完成
  • 異步I/O操作:不導致請求進程阻塞,異步只用處理I/O操作完成后的通知,并不主動讀寫數(shù)據(jù),由系統(tǒng)內(nèi)核完成數(shù)據(jù)的讀寫
  • 阻塞,非阻塞:進程/線程要訪問的數(shù)據(jù)是否就緒,進程/線程是否需要等待

異步IO的概念是要求無阻塞I/O調(diào)用。前面有介紹到I/O操作分兩階段:R1等待數(shù)據(jù)準備好。R2從內(nèi)核到進程拷貝數(shù)據(jù)。雖然epoll在2.6內(nèi)核之后采用mmap機制,使得其在R2階段不需要復制,但是它在R1還是阻塞的。因此歸類到同步IO

五、Reactor模型

Reactor的中心思想是將所有要處理的I/O事件注冊到一個中心I/O多路復用器上,同時主線程/進程阻塞在多路復用器上;一旦有I/O事件到來或是準備就緒,多路復用器返回,并將事先注冊的相應(yīng)I/O事件分發(fā)到對應(yīng)的處理器中

5.1、相關(guān)概念介紹

  • 事件:就是狀態(tài);比如:讀就緒事件指的是我們可以從內(nèi)核讀取數(shù)據(jù)的狀態(tài)
  • 事件分離器:一般會把事件的等待發(fā)生交給epoll、select;而事件的到來是隨機,異步的,所以需要循環(huán)調(diào)用epoll,在框架里對應(yīng)封裝起來的模塊就是事件分離器(簡單理解為對epoll封裝)
  • 事件處理器:事件發(fā)生后需要進程或線程去處理,這個處理者就是事件處理器,一般和事件分離器是不同的線程

5.2、Reactor的一般流程

1)應(yīng)用程序在事件分離器注冊讀寫就緒事件和讀寫就緒事件處理器

2)事件分離器等待讀寫就緒事件發(fā)生

3)讀寫就緒事件發(fā)生,激活事件分離器,分離器調(diào)用讀寫就緒事件處理器

4)事件處理器先從內(nèi)核把數(shù)據(jù)讀取到用戶空間,然后再處理數(shù)據(jù)

5.3、單線程 + Reactor

5.4、多線程 + Reactor

5.5、多線程 + 多個Reactor

六、Proactor模型的一般流程

1)應(yīng)用程序在事件分離器注冊讀完成事件和讀完成事件處理器,并向系統(tǒng)發(fā)出異步讀請求

2)事件分離器等待讀事件的完成

3)在分離器等待過程中,系統(tǒng)利用并行的內(nèi)核線程執(zhí)行實際的讀操作,并將數(shù)據(jù)復制進程緩沖區(qū),最后通知事件分離器讀完成到來

4)事件分離器監(jiān)聽到讀完成事件,激活讀完成事件的處理器

5)讀完成事件處理器直接處理用戶進程緩沖區(qū)中的數(shù)據(jù)

6.1、Proactor和Reactor的區(qū)別

  • Proactor是基于異步I/O的概念,而Reactor一般則是基于多路復用I/O的概念
  • Proactor不需要把數(shù)據(jù)從內(nèi)核復制到用戶空間,這步由系統(tǒng)完成

以上就是解析Linux高性能網(wǎng)絡(luò)IO和Reactor模型的詳細內(nèi)容,更多關(guān)于Linux高性能網(wǎng)絡(luò)IO和Reactor模型的資料請關(guān)注本站其它相關(guān)文章!

版權(quán)聲明:本站文章來源標注為YINGSOO的內(nèi)容版權(quán)均為本站所有,歡迎引用、轉(zhuǎn)載,請保持原文完整并注明來源及原文鏈接。禁止復制或仿造本網(wǎng)站,禁止在非www.sddonglingsh.com所屬的服務(wù)器上建立鏡像,否則將依法追究法律責任。本站部分內(nèi)容來源于網(wǎng)友推薦、互聯(lián)網(wǎng)收集整理而來,僅供學習參考,不代表本站立場,如有內(nèi)容涉嫌侵權(quán),請聯(lián)系alex-e#qq.com處理。

實時開通

自選配置、實時開通

免備案

全球線路精選!

全天候客戶服務(wù)

7x24全年不間斷在線

專屬顧問服務(wù)

1對1客戶咨詢顧問

在線
客服

在線客服:7*24小時在線

客服
熱線

400-630-3752
7*24小時客服服務(wù)熱線

關(guān)注
微信

關(guān)注官方微信
頂部