Python+OpenCV實現(xiàn)圖像識別替換功能詳解
OpenCV-Python是一個Python庫,旨在解決計算機視覺問題。
OpenCV是一個開源的計算機視覺庫,1999年由英特爾的Gary Bradski啟動。Bradski在訪學(xué)過程中注意到,在很多優(yōu)秀大學(xué)的實驗室中,都有非常完備的內(nèi)部公開的計算機視覺接口。這些接口從一屆學(xué)生傳到另一屆學(xué)生,對于剛?cè)腴T的新人來說,使用這些接口比重復(fù)造輪子方便多了。這些接口可以讓他們在之前的基礎(chǔ)上更有效地開展工作。OpenCV正是基于為計算機視覺提供通用接口這一目標(biāo)而被策劃的。
安裝opencv
pip3 install -i https://pypi.doubanio.com/simple/ opencv-python
思路:
1、首先區(qū)分三張圖片:
base圖片代表初始化圖片;
template圖片代表需要在大圖中匹配的圖片;
white圖片為需要替換的圖片。
2、然后template圖片逐像素縮小匹配,設(shè)定閾值,匹配度到達(dá)閾值的圖片,判定為在初始圖片中;否則忽略掉。
3、匹配到最大閾值的地方,返回該區(qū)域的位置(x,y)
4、然后用white圖片resize到相應(yīng)的大小,填補到目標(biāo)區(qū)域。
match函數(shù):
"""檢查模板圖片中是否包含目標(biāo)圖片""" def make_cv2(photo1, photo2): global x, y, w, h, num_1,flag starttime = datetime.datetime.now() #讀取base圖片 img_rgb = cv2.imread(f'{photo1}') #讀取template圖片 template = cv2.imread(f'{photo2}') h, w = template.shape[:-1] print('初始寬高', h, w) res = cv2.matchTemplate(img_rgb, template, cv2.TM_CCOEFF_NORMED) print('初始最大相似度', res.max()) threshold = res.max() """,相似度小于0.2的,不予考慮;相似度在[0.2-0.75]之間的,逐漸縮小圖片""" print(threshold) while threshold >= 0.1 and threshold <= 0.83: if w >= 20 and h >= 20: w = w - 1 h = h - 1 template = cv2.resize( template, (w, h), interpolation=cv2.INTER_CUBIC) res = cv2.matchTemplate(img_rgb, template, cv2.TM_CCOEFF_NORMED) threshold = res.max() print('寬度:', w, '高度:', h, '相似度:', threshold) else: break """達(dá)到0.75覆蓋之前的圖片""" if threshold > 0.8: loc = np.where(res >= threshold) x = int(loc[1]) y = int(loc[0]) print('覆蓋圖片左上角坐標(biāo):', x, y) for pt in zip(*loc[::-1]): cv2.rectangle( img_rgb, pt, (pt[0] + w, pt[1] + h), (255, 144, 51), 1) num_1 += 1 endtime = datetime.datetime.now() print("耗時:", endtime - starttime) overlay_transparent(x, y, photo1, photo3) else: flag = False
replace函數(shù):
"""將目標(biāo)圖片鑲嵌到指定坐標(biāo)位置""" def overlay_transparent(x, y, photo1, photo3): #覆蓋圖片的時候上下移動的像素空間 y += 4 global w, h, num_2 background = cv2.imread(f'{photo1}') overlay = cv2.imread(f'{photo3}') """縮放圖片大小""" overlay = cv2.resize(overlay, (w, h), interpolation=cv2.INTER_CUBIC) background_width = background.shape[1] background_height = background.shape[0] if x >= background_width or y >= background_height: return background h, w = overlay.shape[0], overlay.shape[1] if x + w > background_width: w = background_width - x overlay = overlay[:, :w] if y + h > background_height: h = background_height - y overlay = overlay[:h] if overlay.shape[2] < 4: overlay = np.concatenate([overlay, np.ones((overlay.shape[0], overlay.shape[1], 1), dtype=overlay.dtype) * 255],axis=2,) overlay_image = overlay[..., :3] mask = overlay[..., 3:] / 255.0 background[y:y + h,x:x + w] = (1.0 - mask) * background[y:y + h,x:x + w] + mask * overlay_image # path = 'result' path = '' cv2.imwrite(os.path.join(path, f'1.png'), background) num_2 += 1 print('插入成功。') init()
每次執(zhí)行需要初始化x,y(圖片匹配初始位置參數(shù)),w,h(圖片縮放初始寬高)
x = 0 y = 0 w = 0 h = 0 flag = True threshold = 0 template = '' num_1 = 0 num_2 = 0 photo3 = '' """參數(shù)初始化""" def init(): global x, y, w, h, threshold, template,flag x = 0 y = 0 w = 0 h = 0 threshold = 0 template = ''
完整代碼
import cv2 import datetime import os import numpy as np x = 0 y = 0 w = 0 h = 0 flag = True threshold = 0 template = '' num_1 = 0 num_2 = 0 photo3 = '' """參數(shù)初始化""" def init(): global x, y, w, h, threshold, template,flag x = 0 y = 0 w = 0 h = 0 threshold = 0 template = '' """檢查模板圖片中是否包含目標(biāo)圖片""" def make_cv2(photo1, photo2): global x, y, w, h, num_1,flag starttime = datetime.datetime.now() img_rgb = cv2.imread(f'{photo1}') template = cv2.imread(f'{photo2}') h, w = template.shape[:-1] print('初始寬高', h, w) res = cv2.matchTemplate(img_rgb, template, cv2.TM_CCOEFF_NORMED) print('初始最大相似度', res.max()) threshold = res.max() """,相似度小于0.2的,不予考慮;相似度在[0.2-0.75]之間的,逐漸縮小圖片""" print(threshold) while threshold >= 0.1 and threshold <= 0.83: if w >= 20 and h >= 20: w = w - 1 h = h - 1 template = cv2.resize( template, (w, h), interpolation=cv2.INTER_CUBIC) res = cv2.matchTemplate(img_rgb, template, cv2.TM_CCOEFF_NORMED) threshold = res.max() print('寬度:', w, '高度:', h, '相似度:', threshold) else: break """達(dá)到0.75覆蓋之前的圖片""" if threshold > 0.8: loc = np.where(res >= threshold) x = int(loc[1]) y = int(loc[0]) print('覆蓋圖片左上角坐標(biāo):', x, y) for pt in zip(*loc[::-1]): cv2.rectangle( img_rgb, pt, (pt[0] + w, pt[1] + h), (255, 144, 51), 1) num_1 += 1 endtime = datetime.datetime.now() print("耗時:", endtime - starttime) overlay_transparent(x, y, photo1, photo3) else: flag = False """將目標(biāo)圖片鑲嵌到指定坐標(biāo)位置""" def overlay_transparent(x, y, photo1, photo3): y += 0 global w, h, num_2 background = cv2.imread(f'{photo1}') overlay = cv2.imread(f'{photo3}') """縮放圖片大小""" overlay = cv2.resize(overlay, (w, h), interpolation=cv2.INTER_CUBIC) background_width = background.shape[1] background_height = background.shape[0] if x >= background_width or y >= background_height: return background h, w = overlay.shape[0], overlay.shape[1] if x + w > background_width: w = background_width - x overlay = overlay[:, :w] if y + h > background_height: h = background_height - y overlay = overlay[:h] if overlay.shape[2] < 4: overlay = np.concatenate([overlay, np.ones((overlay.shape[0], overlay.shape[1], 1), dtype=overlay.dtype) * 255],axis=2,) overlay_image = overlay[..., :3] mask = overlay[..., 3:] / 255.0 background[y:y + h,x:x + w] = (1.0 - mask) * background[y:y + h,x:x + w] + mask * overlay_image # path = 'result' path = '' cv2.imwrite(os.path.join(path, f'1.png'), background) num_2 += 1 print('插入成功。') init() if __name__ == "__main__": photo1 = "1.png" photo2 = "3.png" photo3 = "white.png" while flag == True: make_cv2(photo1, photo2) overlay_transparent(x, y, photo1, photo3)
執(zhí)行結(jié)果:
到此這篇關(guān)于Python+OpenCV實現(xiàn)圖像識別替換功能詳解的文章就介紹到這了,更多相關(guān)Python OpenCV圖像識別替換內(nèi)容請搜索本站以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持本站!
版權(quán)聲明:本站文章來源標(biāo)注為YINGSOO的內(nèi)容版權(quán)均為本站所有,歡迎引用、轉(zhuǎn)載,請保持原文完整并注明來源及原文鏈接。禁止復(fù)制或仿造本網(wǎng)站,禁止在非www.sddonglingsh.com所屬的服務(wù)器上建立鏡像,否則將依法追究法律責(zé)任。本站部分內(nèi)容來源于網(wǎng)友推薦、互聯(lián)網(wǎng)收集整理而來,僅供學(xué)習(xí)參考,不代表本站立場,如有內(nèi)容涉嫌侵權(quán),請聯(lián)系alex-e#qq.com處理。