人妖在线一区,国产日韩欧美一区二区综合在线,国产啪精品视频网站免费,欧美内射深插日本少妇

新聞動(dòng)態(tài)

對(duì)Keras自帶Loss Function的深入研究

發(fā)布日期:2022-04-12 10:04 | 文章來源:源碼中國

本文研究Keras自帶的幾個(gè)常用的Loss Function。

1. categorical_crossentropy VS. sparse_categorical_crossentropy

注意到二者的主要差別在于輸入是否為integer tensor。在文檔中,我們還可以找到關(guān)于二者如何選擇的描述:

解釋一下這里的Integer target 與 Categorical target,實(shí)際上Integer target經(jīng)過獨(dú)熱編碼就變成了Categorical target,舉例說明:

(類別數(shù)5)
Integer target: [1,2,4]
Categorical target: [[0. 1. 0. 0. 0.]
					 [0. 0. 1. 0. 0.]
					 [0. 0. 0. 0. 1.]]

在Keras中提供了to_categorical方法來實(shí)現(xiàn)二者的轉(zhuǎn)化:

from keras.utils import to_categorical
categorical_labels = to_categorical(int_labels, num_classes=None)

注意categorical_crossentropy和sparse_categorical_crossentropy的輸入?yún)?shù)output,都是softmax輸出的tensor。我們都知道softmax的輸出服從多項(xiàng)分布,

因此categorical_crossentropy和sparse_categorical_crossentropy應(yīng)當(dāng)應(yīng)用于多分類問題。

我們?cè)倏纯催@兩個(gè)的源碼,來驗(yàn)證一下:

https://github.com/tensorflow/tensorflow/blob/r1.13/tensorflow/python/keras/backend.py
--------------------------------------------------------------------------------------------------------------------
def categorical_crossentropy(target, output, from_logits=False, axis=-1):
  """Categorical crossentropy between an output tensor and a target tensor.
  Arguments:
target: A tensor of the same shape as `output`.
output: A tensor resulting from a softmax
 (unless `from_logits` is True, in which
 case `output` is expected to be the logits).
from_logits: Boolean, whether `output` is the
 result of a softmax, or is a tensor of logits.
axis: Int specifying the channels axis. `axis=-1` corresponds to data
 format `channels_last', and `axis=1` corresponds to data format
 `channels_first`.
  Returns:
Output tensor.
  Raises:
ValueError: if `axis` is neither -1 nor one of the axes of `output`.
  """
  rank = len(output.shape)
  axis = axis % rank
  # Note: nn.softmax_cross_entropy_with_logits_v2
  # expects logits, Keras expects probabilities.
  if not from_logits:
 # scale preds so that the class probas of each sample sum to 1
 output = output / math_ops.reduce_sum(output, axis, True)
 # manual computation of crossentropy
 epsilon_ = _to_tensor(epsilon(), output.dtype.base_dtype)
 output = clip_ops.clip_by_value(output, epsilon_, 1. - epsilon_)
 return -math_ops.reduce_sum(target * math_ops.log(output), axis)
  else:
 return nn.softmax_cross_entropy_with_logits_v2(labels=target, logits=output)
--------------------------------------------------------------------------------------------------------------------
def sparse_categorical_crossentropy(target, output, from_logits=False, axis=-1):
  """Categorical crossentropy with integer targets.
  Arguments:
target: An integer tensor.
output: A tensor resulting from a softmax
 (unless `from_logits` is True, in which
 case `output` is expected to be the logits).
from_logits: Boolean, whether `output` is the
 result of a softmax, or is a tensor of logits.
axis: Int specifying the channels axis. `axis=-1` corresponds to data
 format `channels_last', and `axis=1` corresponds to data format
 `channels_first`.
  Returns:
Output tensor.
  Raises:
ValueError: if `axis` is neither -1 nor one of the axes of `output`.
  """
  rank = len(output.shape)
  axis = axis % rank
  if axis != rank - 1:
 permutation = list(range(axis)) + list(range(axis + 1, rank)) + [axis]
 output = array_ops.transpose(output, perm=permutation)
  # Note: nn.sparse_softmax_cross_entropy_with_logits
  # expects logits, Keras expects probabilities.
  if not from_logits:
 epsilon_ = _to_tensor(epsilon(), output.dtype.base_dtype)
 output = clip_ops.clip_by_value(output, epsilon_, 1 - epsilon_)
 output = math_ops.log(output)
  output_shape = output.shape
  targets = cast(flatten(target), 'int64')
  logits = array_ops.reshape(output, [-1, int(output_shape[-1])])
  res = nn.sparse_softmax_cross_entropy_with_logits(
labels=targets, logits=logits)
  if len(output_shape) >= 3:
 # If our output includes timesteps or spatial dimensions we need to reshape
 return array_ops.reshape(res, array_ops.shape(output)[:-1])
  else:
 return res

categorical_crossentropy計(jì)算交叉熵時(shí)使用的是nn.softmax_cross_entropy_with_logits_v2( labels=targets, logits=logits),而sparse_categorical_crossentropy使用的是nn.sparse_softmax_cross_entropy_with_logits( labels=targets, logits=logits),二者本質(zhì)并無區(qū)別,只是對(duì)輸入?yún)?shù)logits的要求不同,v2要求的是logits與labels格式相同(即元素也是獨(dú)熱的),而sparse則要求logits的元素是個(gè)數(shù)值,與上面Integer format和Categorical format的對(duì)比含義類似。

綜上所述,categorical_crossentropy和sparse_categorical_crossentropy只不過是輸入?yún)?shù)target類型上的區(qū)別,其loss的計(jì)算在本質(zhì)上沒有區(qū)別,就是交叉熵;二者是針對(duì)多分類(Multi-class)任務(wù)的。

2. Binary_crossentropy

二元交叉熵,從名字中我們可以看出,這個(gè)loss function可能是適用于二分類的。文檔中并沒有詳細(xì)說明,那么直接看看源碼吧:

https://github.com/tensorflow/tensorflow/blob/r1.13/tensorflow/python/keras/backend.py
--------------------------------------------------------------------------------------------------------------------
def binary_crossentropy(target, output, from_logits=False):
  """Binary crossentropy between an output tensor and a target tensor.
  Arguments:
target: A tensor with the same shape as `output`.
output: A tensor.
from_logits: Whether `output` is expected to be a logits tensor.
 By default, we consider that `output`
 encodes a probability distribution.
  Returns:
A tensor.
  """
  # Note: nn.sigmoid_cross_entropy_with_logits
  # expects logits, Keras expects probabilities.
  if not from_logits:
 # transform back to logits
 epsilon_ = _to_tensor(epsilon(), output.dtype.base_dtype)
 output = clip_ops.clip_by_value(output, epsilon_, 1 - epsilon_)
 output = math_ops.log(output / (1 - output))
  return nn.sigmoid_cross_entropy_with_logits(labels=target, logits=output)

可以看到源碼中計(jì)算使用了nn.sigmoid_cross_entropy_with_logits,熟悉tensorflow的應(yīng)該比較熟悉這個(gè)損失函數(shù)了,它可以用于簡單的二分類,也可以用于多標(biāo)簽任務(wù),而且應(yīng)用廣泛,在樣本合理的情況下(如不存在類別不均衡等問題)的情況下,通??梢灾苯邮褂谩?/p>

補(bǔ)充:keras自定義loss function的簡單方法

首先看一下Keras中我們常用到的目標(biāo)函數(shù)(如mse,mae等)是如何定義的

from keras import backend as K
def mean_squared_error(y_true, y_pred):
 return K.mean(K.square(y_pred - y_true), axis=-1)
def mean_absolute_error(y_true, y_pred):
 return K.mean(K.abs(y_pred - y_true), axis=-1)
def mean_absolute_percentage_error(y_true, y_pred):
 diff = K.abs((y_true - y_pred) / K.clip(K.abs(y_true), K.epsilon(), np.inf))
 return 100. * K.mean(diff, axis=-1)
def categorical_crossentropy(y_true, y_pred):
 '''Expects a binary class matrix instead of a vector of scalar classes.
 '''
 return K.categorical_crossentropy(y_pred, y_true)
def sparse_categorical_crossentropy(y_true, y_pred):
 '''expects an array of integer classes.
 Note: labels shape must have the same number of dimensions as output shape.
 If you get a shape error, add a length-1 dimension to labels.
 '''
 return K.sparse_categorical_crossentropy(y_pred, y_true)
def binary_crossentropy(y_true, y_pred):
 return K.mean(K.binary_crossentropy(y_pred, y_true), axis=-1)
def kullback_leibler_divergence(y_true, y_pred):
 y_true = K.clip(y_true, K.epsilon(), 1)
 y_pred = K.clip(y_pred, K.epsilon(), 1)
 return K.sum(y_true * K.log(y_true / y_pred), axis=-1)
def poisson(y_true, y_pred):
 return K.mean(y_pred - y_true * K.log(y_pred + K.epsilon()), axis=-1)
def cosine_proximity(y_true, y_pred):
 y_true = K.l2_normalize(y_true, axis=-1)
 y_pred = K.l2_normalize(y_pred, axis=-1)
 return -K.mean(y_true * y_pred, axis=-1)

所以仿照以上的方法,可以自己定義特定任務(wù)的目標(biāo)函數(shù)。比如:定義預(yù)測值與真實(shí)值的差

from keras import backend as K
def new_loss(y_true,y_pred):
 return K.mean((y_pred-y_true),axis = -1)

然后,應(yīng)用你自己定義的目標(biāo)函數(shù)進(jìn)行編譯

from keras import backend as K
def my_loss(y_true,y_pred):
 return K.mean((y_pred-y_true),axis = -1)
model.compile(optimizer=optimizers.RMSprop(lr),loss=my_loss,
metrics=['accuracy'])

以上為個(gè)人經(jīng)驗(yàn),希望能給大家一個(gè)參考,也希望大家多多支持本站。

國外服務(wù)器租用

版權(quán)聲明:本站文章來源標(biāo)注為YINGSOO的內(nèi)容版權(quán)均為本站所有,歡迎引用、轉(zhuǎn)載,請(qǐng)保持原文完整并注明來源及原文鏈接。禁止復(fù)制或仿造本網(wǎng)站,禁止在非www.sddonglingsh.com所屬的服務(wù)器上建立鏡像,否則將依法追究法律責(zé)任。本站部分內(nèi)容來源于網(wǎng)友推薦、互聯(lián)網(wǎng)收集整理而來,僅供學(xué)習(xí)參考,不代表本站立場,如有內(nèi)容涉嫌侵權(quán),請(qǐng)聯(lián)系alex-e#qq.com處理。

相關(guān)文章

實(shí)時(shí)開通

自選配置、實(shí)時(shí)開通

免備案

全球線路精選!

全天候客戶服務(wù)

7x24全年不間斷在線

專屬顧問服務(wù)

1對(duì)1客戶咨詢顧問

在線
客服

在線客服:7*24小時(shí)在線

客服
熱線

400-630-3752
7*24小時(shí)客服服務(wù)熱線

關(guān)注
微信

關(guān)注官方微信
頂部