人妖在线一区,国产日韩欧美一区二区综合在线,国产啪精品视频网站免费,欧美内射深插日本少妇

新聞動態(tài)

Pytorch可視化的幾種實現(xiàn)方法

發(fā)布日期:2022-03-14 09:17 | 文章來源:站長之家

一,利用 tensorboardX 可視化網(wǎng)絡(luò)結(jié)構(gòu)

參考 https://github.com/lanpa/tensorboardX
支持scalar, image, figure, histogram, audio, text, graph, onnx_graph, embedding, pr_curve and video summaries.
例子要求tensorboardX>=1.2 and pytorch>=0.4

安裝

pip install tensorboardXpip install git+https://github.com/lanpa/tensorboardX

例子

# demo.py
import torch
import torchvision.utils as vutils
import numpy as np
import torchvision.models as models
from torchvision import datasets
from tensorboardX import SummaryWriter
resnet18 = models.resnet18(False)
writer = SummaryWriter()
sample_rate = 44100
freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440]
for n_iter in range(100):
 dummy_s1 = torch.rand(1)
 dummy_s2 = torch.rand(1)
 # data grouping by `slash`
 writer.add_scalar('data/scalar1', dummy_s1[0], n_iter)
 writer.add_scalar('data/scalar2', dummy_s2[0], n_iter)
 writer.add_scalars('data/scalar_group', {'xsinx': n_iter * np.sin(n_iter),
  'xcosx': n_iter * np.cos(n_iter),
  'arctanx': np.arctan(n_iter)}, n_iter)
 dummy_img = torch.rand(32, 3, 64, 64)  # output from network
 if n_iter % 10 == 0:
  x = vutils.make_grid(dummy_img, normalize=True, scale_each=True)
  writer.add_image('Image', x, n_iter)
  dummy_audio = torch.zeros(sample_rate * 2)
  for i in range(x.size(0)):
# amplitude of sound should in [-1, 1]
dummy_audio[i] = np.cos(freqs[n_iter // 10] * np.pi * float(i) / float(sample_rate))
  writer.add_audio('myAudio', dummy_audio, n_iter, sample_rate=sample_rate)
  writer.add_text('Text', 'text logged at step:' + str(n_iter), n_iter)
  for name, param in resnet18.named_parameters():
writer.add_histogram(name, param.clone().cpu().data.numpy(), n_iter)
  # needs tensorboard 0.4RC or later
  writer.add_pr_curve('xoxo', np.random.randint(2, size=100), np.random.rand(100), n_iter)
dataset = datasets.MNIST('mnist', train=False, download=True)
images = dataset.test_data[:100].float()
label = dataset.test_labels[:100]
features = images.view(100, 784)
writer.add_embedding(features, metadata=label, label_img=images.unsqueeze(1))
# export scalar data to JSON for external processing
writer.export_scalars_to_json("./all_scalars.json")
writer.close()

運(yùn)行: python demo.py 會出現(xiàn)runs文件夾,然后在cd到工程目錄運(yùn)行tensorboard --logdir runs

結(jié)果:


二,利用 vistom 可視化

參考:https://github.com/facebookresearch/visdom

安裝和啟動
安裝: pip install visdom
啟動:python -m visdom.server示例

 from visdom import Visdom
 #單張
 viz.image(
  np.random.rand(3, 512, 256),
  opts=dict(title=\\\\\'Random!\\\\\', caption=\\\\\'How random.\\\\\'),
 )
 #多張
 viz.images(
  np.random.randn(20, 3, 64, 64),
  opts=dict(title=\\\\\'Random images\\\\\', caption=\\\\\'How random.\\\\\')
 )

from visdom import Visdom
image = np.zeros((100,100))
vis = Visdom() 
vis.text("hello world!!!")
vis.image(image)
vis.line(Y = np.column_stack((np.random.randn(10),np.random.randn(10))), 
X = np.column_stack((np.arange(10),np.arange(10))),
opts = dict(title = "line", legend=["Test","Test1"]))

三,利用pytorchviz可視化網(wǎng)絡(luò)結(jié)構(gòu)

參考:https://github.com/szagoruyko/pytorchviz

到此這篇關(guān)于Pytorch可視化的幾種實現(xiàn)方法的文章就介紹到這了,更多相關(guān)Pytorch可視化內(nèi)容請搜索本站以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持本站!

香港穩(wěn)定服務(wù)器

版權(quán)聲明:本站文章來源標(biāo)注為YINGSOO的內(nèi)容版權(quán)均為本站所有,歡迎引用、轉(zhuǎn)載,請保持原文完整并注明來源及原文鏈接。禁止復(fù)制或仿造本網(wǎng)站,禁止在非www.sddonglingsh.com所屬的服務(wù)器上建立鏡像,否則將依法追究法律責(zé)任。本站部分內(nèi)容來源于網(wǎng)友推薦、互聯(lián)網(wǎng)收集整理而來,僅供學(xué)習(xí)參考,不代表本站立場,如有內(nèi)容涉嫌侵權(quán),請聯(lián)系alex-e#qq.com處理。

相關(guān)文章

實時開通

自選配置、實時開通

免備案

全球線路精選!

全天候客戶服務(wù)

7x24全年不間斷在線

專屬顧問服務(wù)

1對1客戶咨詢顧問

在線
客服

在線客服:7*24小時在線

客服
熱線

400-630-3752
7*24小時客服服務(wù)熱線

關(guān)注
微信

關(guān)注官方微信
頂部