Pytorch可視化的幾種實現(xiàn)方法
一,利用 tensorboardX 可視化網(wǎng)絡(luò)結(jié)構(gòu)
參考 https://github.com/lanpa/tensorboardX
支持scalar, image, figure, histogram, audio, text, graph, onnx_graph, embedding, pr_curve and video summaries.
例子要求tensorboardX>=1.2 and pytorch>=0.4
安裝
pip install tensorboardX
或 pip install git+https://github.com/lanpa/tensorboardX
例子
# demo.py import torch import torchvision.utils as vutils import numpy as np import torchvision.models as models from torchvision import datasets from tensorboardX import SummaryWriter resnet18 = models.resnet18(False) writer = SummaryWriter() sample_rate = 44100 freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440] for n_iter in range(100): dummy_s1 = torch.rand(1) dummy_s2 = torch.rand(1) # data grouping by `slash` writer.add_scalar('data/scalar1', dummy_s1[0], n_iter) writer.add_scalar('data/scalar2', dummy_s2[0], n_iter) writer.add_scalars('data/scalar_group', {'xsinx': n_iter * np.sin(n_iter), 'xcosx': n_iter * np.cos(n_iter), 'arctanx': np.arctan(n_iter)}, n_iter) dummy_img = torch.rand(32, 3, 64, 64) # output from network if n_iter % 10 == 0: x = vutils.make_grid(dummy_img, normalize=True, scale_each=True) writer.add_image('Image', x, n_iter) dummy_audio = torch.zeros(sample_rate * 2) for i in range(x.size(0)): # amplitude of sound should in [-1, 1] dummy_audio[i] = np.cos(freqs[n_iter // 10] * np.pi * float(i) / float(sample_rate)) writer.add_audio('myAudio', dummy_audio, n_iter, sample_rate=sample_rate) writer.add_text('Text', 'text logged at step:' + str(n_iter), n_iter) for name, param in resnet18.named_parameters(): writer.add_histogram(name, param.clone().cpu().data.numpy(), n_iter) # needs tensorboard 0.4RC or later writer.add_pr_curve('xoxo', np.random.randint(2, size=100), np.random.rand(100), n_iter) dataset = datasets.MNIST('mnist', train=False, download=True) images = dataset.test_data[:100].float() label = dataset.test_labels[:100] features = images.view(100, 784) writer.add_embedding(features, metadata=label, label_img=images.unsqueeze(1)) # export scalar data to JSON for external processing writer.export_scalars_to_json("./all_scalars.json") writer.close()
運(yùn)行: python demo.py
會出現(xiàn)runs文件夾,然后在cd到工程目錄運(yùn)行tensorboard --logdir runs
結(jié)果:
二,利用 vistom 可視化
參考:https://github.com/facebookresearch/visdom
安裝和啟動
安裝: pip install visdom
啟動:python -m visdom.server示例
from visdom import Visdom #單張 viz.image( np.random.rand(3, 512, 256), opts=dict(title=\\\\\'Random!\\\\\', caption=\\\\\'How random.\\\\\'), ) #多張 viz.images( np.random.randn(20, 3, 64, 64), opts=dict(title=\\\\\'Random images\\\\\', caption=\\\\\'How random.\\\\\') )
from visdom import Visdom image = np.zeros((100,100)) vis = Visdom() vis.text("hello world!!!") vis.image(image) vis.line(Y = np.column_stack((np.random.randn(10),np.random.randn(10))), X = np.column_stack((np.arange(10),np.arange(10))), opts = dict(title = "line", legend=["Test","Test1"]))
三,利用pytorchviz可視化網(wǎng)絡(luò)結(jié)構(gòu)
參考:https://github.com/szagoruyko/pytorchviz
到此這篇關(guān)于Pytorch可視化的幾種實現(xiàn)方法的文章就介紹到這了,更多相關(guān)Pytorch可視化內(nèi)容請搜索本站以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持本站!
版權(quán)聲明:本站文章來源標(biāo)注為YINGSOO的內(nèi)容版權(quán)均為本站所有,歡迎引用、轉(zhuǎn)載,請保持原文完整并注明來源及原文鏈接。禁止復(fù)制或仿造本網(wǎng)站,禁止在非www.sddonglingsh.com所屬的服務(wù)器上建立鏡像,否則將依法追究法律責(zé)任。本站部分內(nèi)容來源于網(wǎng)友推薦、互聯(lián)網(wǎng)收集整理而來,僅供學(xué)習(xí)參考,不代表本站立場,如有內(nèi)容涉嫌侵權(quán),請聯(lián)系alex-e#qq.com處理。