人妖在线一区,国产日韩欧美一区二区综合在线,国产啪精品视频网站免费,欧美内射深插日本少妇

新聞動態(tài)

一文教你用python編寫Dijkstra算法進行機器人路徑規(guī)劃

發(fā)布日期:2022-02-19 13:13 | 文章來源:CSDN

為了機器人在尋路的過程中避障并且找到最短距離,我們需要使用一些算法進行路徑規(guī)劃(Path Planning),常用的算法有Djikstra算法、A*算法等等,在github上有一個非常好的項目叫做PythonRobotics,其中給出了源代碼,參考代碼,可以對Djikstra算法有更深的了解。

一、算法原理

如圖所示,Dijkstra算法要解決的是一個有向權重圖中最短路徑的尋找問題,圖中紅色節(jié)點1代表起始節(jié)點,藍色節(jié)點6代表目標結點。箭頭上的數(shù)字代表兩個結點中的的距離,也就是模型中所謂的代價(cost)。

貪心算法需要設立兩個集合,open_set(開集)和closed_set(閉集),然后根據(jù)以下程序進行操作:

  • 把初始結點放入到open_set中;
  • 把open_set中代價最小的節(jié)點取出來放入到closed_set中,并且作為當前節(jié)點;
  • 把與當前節(jié)點相鄰的節(jié)點放入到open_set中,如果代價更小更新代價
  • 重復2-3過程,直到找到終點。

注意open_set中的代價是可變的,而closed_set中的代價已經(jīng)是最小的代價了,這也是為什么叫做open和close的原因。

至于為什么closed_set中的代價是最小的,是因為我們使用了貪心算法,既然已經(jīng)把節(jié)點加入到了close中,那么初始點到close節(jié)點中的距離就比到open中的距離小了,無論如何也不可能找到比它更小的了。

二、程序代碼

"""
Grid based Dijkstra planning
author: Atsushi Sakai(@Atsushi_twi)
"""
import matplotlib.pyplot as plt
import math
show_animation = True

class Dijkstra:
 def __init__(self, ox, oy, resolution, robot_radius):
  """
  Initialize map for a star planning
  ox: x position list of Obstacles [m]
  oy: y position list of Obstacles [m]
  resolution: grid resolution [m]
  rr: robot radius[m]
  """
  self.min_x = None
  self.min_y = None
  self.max_x = None
  self.max_y = None
  self.x_width = None
  self.y_width = None
  self.obstacle_map = None
  self.resolution = resolution
  self.robot_radius = robot_radius
  self.calc_obstacle_map(ox, oy)
  self.motion = self.get_motion_model()
 class Node:
  def __init__(self, x, y, cost, parent_index):
self.x = x  # index of grid
self.y = y  # index of grid
self.cost = cost
self.parent_index = parent_index  # index of previous Node
  def __str__(self):
return str(self.x) + "," + str(self.y) + "," + str(
 self.cost) + "," + str(self.parent_index)
 def planning(self, sx, sy, gx, gy):
  """
  dijkstra path search
  input:
s_x: start x position [m]
s_y: start y position [m]
gx: goal x position [m]
gx: goal x position [m]
  output:
rx: x position list of the final path
ry: y position list of the final path
  """
  start_node = self.Node(self.calc_xy_index(sx, self.min_x),
self.calc_xy_index(sy, self.min_y), 0.0, -1)
  goal_node = self.Node(self.calc_xy_index(gx, self.min_x),
  self.calc_xy_index(gy, self.min_y), 0.0, -1)
  open_set, closed_set = dict(), dict()
  open_set[self.calc_index(start_node)] = start_node
  while 1:
c_id = min(open_set, key=lambda o: open_set[o].cost)
current = open_set[c_id]
# show graph
if show_animation:  # pragma: no cover
 plt.plot(self.calc_position(current.x, self.min_x), self.calc_position(current.y, self.min_y), "xc")
 # for stopping simulation with the esc key.
 plt.gcf().canvas.mpl_connect(
  'key_release_event',
  lambda event: [exit(0) if event.key == 'escape' else None])
 if len(closed_set.keys()) % 10 == 0:
  plt.pause(0.001)
if current.x == goal_node.x and current.y == goal_node.y:
 print("Find goal")
 goal_node.parent_index = current.parent_index
 goal_node.cost = current.cost
 break
# Remove the item from the open set
del open_set[c_id]
# Add it to the closed set
closed_set[c_id] = current
# expand search grid based on motion model
for move_x, move_y, move_cost in self.motion:
 node = self.Node(current.x + move_x,
  current.y + move_y,
  current.cost + move_cost, c_id)
 n_id = self.calc_index(node)
 if n_id in closed_set:
  continue
 if not self.verify_node(node):
  continue
 if n_id not in open_set:
  open_set[n_id] = node  # Discover a new node
 else:
  if open_set[n_id].cost >= node.cost:# This path is the best until now. record it!open_set[n_id] = node
  rx, ry = self.calc_final_path(goal_node, closed_set)
  return rx, ry
 def calc_final_path(self, goal_node, closed_set):
  # generate final course
  rx, ry = [self.calc_position(goal_node.x, self.min_x)], [
self.calc_position(goal_node.y, self.min_y)]
  parent_index = goal_node.parent_index
  while parent_index != -1:
n = closed_set[parent_index]
rx.append(self.calc_position(n.x, self.min_x))
ry.append(self.calc_position(n.y, self.min_y))
parent_index = n.parent_index
  return rx, ry
 def calc_position(self, index, minp):
  pos = index * self.resolution + minp
  return pos
 def calc_xy_index(self, position, minp):
  return round((position - minp) / self.resolution)
 def calc_index(self, node):
  return (node.y - self.min_y) * self.x_width + (node.x - self.min_x)
 def verify_node(self, node):
  px = self.calc_position(node.x, self.min_x)
  py = self.calc_position(node.y, self.min_y)
  if px < self.min_x:
return False
  if py < self.min_y:
return False
  if px >= self.max_x:
return False
  if py >= self.max_y:
return False
  if self.obstacle_map[node.x][node.y]:
return False
  return True
 def calc_obstacle_map(self, ox, oy):
  self.min_x = round(min(ox))
  self.min_y = round(min(oy))
  self.max_x = round(max(ox))
  self.max_y = round(max(oy))
  print("min_x:", self.min_x)
  print("min_y:", self.min_y)
  print("max_x:", self.max_x)
  print("max_y:", self.max_y)
  self.x_width = round((self.max_x - self.min_x) / self.resolution)
  self.y_width = round((self.max_y - self.min_y) / self.resolution)
  print("x_width:", self.x_width)
  print("y_width:", self.y_width)
  # obstacle map generation
  self.obstacle_map = [[False for _ in range(self.y_width)]
 for _ in range(self.x_width)]
  for ix in range(self.x_width):
x = self.calc_position(ix, self.min_x)
for iy in range(self.y_width):
 y = self.calc_position(iy, self.min_y)
 for iox, ioy in zip(ox, oy):
  d = math.hypot(iox - x, ioy - y)
  if d <= self.robot_radius:self.obstacle_map[ix][iy] = Truebreak
 @staticmethod
 def get_motion_model():
  # dx, dy, cost
  motion = [[1, 0, 1],
[0, 1, 1],
[-1, 0, 1],
[0, -1, 1],
[-1, -1, math.sqrt(2)],
[-1, 1, math.sqrt(2)],
[1, -1, math.sqrt(2)],
[1, 1, math.sqrt(2)]]
  return motion

def main():
 print(__file__ + " start!!")
 # start and goal position
 sx = -5.0  # [m]
 sy = -5.0  # [m]
 gx = 50.0  # [m]
 gy = 50.0  # [m]
 grid_size = 2.0  # [m]
 robot_radius = 1.0  # [m]
 # set obstacle positions
 ox, oy = [], []
 for i in range(-10, 60):
  ox.append(i)
  oy.append(-10.0)
 for i in range(-10, 60):
  ox.append(60.0)
  oy.append(i)
 for i in range(-10, 61):
  ox.append(i)
  oy.append(60.0)
 for i in range(-10, 61):
  ox.append(-10.0)
  oy.append(i)
 for i in range(-10, 40):
  ox.append(20.0)
  oy.append(i)
 for i in range(0, 40):
  ox.append(40.0)
  oy.append(60.0 - i)
 if show_animation:  # pragma: no cover
  plt.plot(ox, oy, ".k")
  plt.plot(sx, sy, "og")
  plt.plot(gx, gy, "xb")
  plt.grid(True)
  plt.axis("equal")
 dijkstra = Dijkstra(ox, oy, grid_size, robot_radius)
 rx, ry = dijkstra.planning(sx, sy, gx, gy)
 if show_animation:  # pragma: no cover
  plt.plot(rx, ry, "-r")
  plt.pause(0.01)
  plt.show()

if __name__ == '__main__':
 main()

三、運行結果

四、 A*算法:Djikstra算法的改進

Dijkstra算法實際上是貪心搜索算法,算法復雜度為O( n 2 n^2 n2),為了減少無效搜索的次數(shù),我們可以增加一個啟發(fā)式函數(shù)(heuristic),比如搜索點到終點目標的距離,在選擇open_set元素的時候,我們將cost變成cost+heuristic,就可以給出搜索的方向性,這樣就可以減少南轅北轍的情況。我們可以run一下PythonRobotics中的Astar代碼,得到以下結果:

總結

到此這篇關于python編寫Dijkstra算法進行機器人路徑規(guī)劃的文章就介紹到這了,更多相關python寫Dijkstra算法內容請搜索本站以前的文章或繼續(xù)瀏覽下面的相關文章希望大家以后多多支持本站!

香港服務器租用

版權聲明:本站文章來源標注為YINGSOO的內容版權均為本站所有,歡迎引用、轉載,請保持原文完整并注明來源及原文鏈接。禁止復制或仿造本網(wǎng)站,禁止在非www.sddonglingsh.com所屬的服務器上建立鏡像,否則將依法追究法律責任。本站部分內容來源于網(wǎng)友推薦、互聯(lián)網(wǎng)收集整理而來,僅供學習參考,不代表本站立場,如有內容涉嫌侵權,請聯(lián)系alex-e#qq.com處理。

相關文章

實時開通

自選配置、實時開通

免備案

全球線路精選!

全天候客戶服務

7x24全年不間斷在線

專屬顧問服務

1對1客戶咨詢顧問

在線
客服

在線客服:7*24小時在線

客服
熱線

400-630-3752
7*24小時客服服務熱線

關注
微信

關注官方微信
頂部