OpenCV半小時(shí)掌握基本操作之圖像梯度
【OpenCV】⚠️高手勿入! 半小時(shí)學(xué)會(huì)基本操作⚠️圖像梯度
概述
OpenCV 是一個(gè)跨平臺(tái)的計(jì)算機(jī)視覺庫(kù), 支持多語言, 功能強(qiáng)大. 今天小白就帶大家一起攜手走進(jìn) OpenCV 的世界.
梯度運(yùn)算
梯度: 膨脹 (Dilating) - 腐蝕 (Eroding).
例子:
# 讀取圖片 pie = cv2.imread("pie.jpg") # 核 kernel = np.ones((7, 7), np.uint8) # 計(jì)算梯度 gradient = cv2.morphologyEx(pie, cv2.MORPH_GRADIENT, kernel=kernel) # 圖片展示 cv2.imshow("gradient", gradient) cv2.waitKey(0) cv2.destroyAllWindows()
輸出結(jié)果:
禮帽
禮帽 (Top Hat): 原始輸入 - 開運(yùn)算結(jié)果.
例子:
# 讀取圖片 img = cv2.imread("white.jpg") # 核 kernel = np.ones((7, 7), np.uint8) # 禮帽 tophat = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, kernel=kernel) # 圖片展示 cv2.imshow("tophat", tophat) cv2.waitKey(0) cv2.destroyAllWindows()
輸出結(jié)果:
黑帽
黑帽 (Black Hat): 閉運(yùn)算 - 原始輸入.
例子:
# 讀取圖片 img = cv2.imread("white.jpg") # 核 kernel = np.ones((7, 7), np.uint8) # 禮帽 blackhat = cv2.morphologyEx(img, cv2.MORPH_BLACKHAT, kernel=kernel) # 圖片展示 cv2.imshow("blackhat", blackhat) cv2.waitKey(0) cv2.destroyAllWindows()
輸出結(jié)果:
Sobel 算子
Sobel 算子 (Sobeloperator) 是邊緣檢測(cè)中非常重要的一個(gè)算子. Sobel 算子是一類離散性差分算子, 用來運(yùn)算圖像高亮度函數(shù)的灰度之近似值.
格式:
cv2.Sobel(src, ddepth, dx, dy, ksize)
參數(shù):
src: 原圖
ddepth: 圖片深度
dx: 水平方向
dy: 豎直方向
ksize: 算子大小
計(jì)算 x
代碼:
# 讀取圖片 img = cv2.imread("pie.jpg") # Sobel算子 sobelx = cv2.Sobel(img, -1, 1, 0, ksize=3) # 展示圖片 cv2.imshow("sobelx", sobelx) cv2.waitKey(0) cv2.destroyAllWindows()
輸出結(jié)果:
計(jì)算 y
代碼:
# 讀取圖片 img = cv2.imread("pie.jpg") # Sobel算子 sobely = cv2.Sobel(img, -1, 0, 1, ksize=3) # 展示圖片 cv2.imshow("sobely", sobely) cv2.waitKey(0) cv2.destroyAllWindows()
輸出結(jié)果:
計(jì)算 x+y
代碼:
# 讀取圖片 img = cv2.imread("pie.jpg") # Sobel算子 sobel = cv2.Sobel(img, -1, 1, 1, ksize=3) # 展示圖片 cv2.imshow("sobel", sobel) cv2.waitKey(0) cv2.destroyAllWindows()
輸出結(jié)果:
融合
代碼:
# Sobel算子 sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=3) sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=3) # 轉(zhuǎn)換成絕對(duì)值 sobelx = cv2.convertScaleAbs(sobelx) sobely = cv2.convertScaleAbs(sobely) # 融合 sobel_xy = cv2.addWeighted(sobelx, 0.5, sobely, 0.5, 0) # 展示圖片 cv2.imshow("sobel_xy", sobel_xy) cv2.waitKey(0) cv2.destroyAllWindows()
輸出結(jié)果:
注: 當(dāng) ddepth 設(shè)置為 -1, 即與原圖保持一致, 得到的結(jié)果可能是錯(cuò)誤的. 計(jì)算梯度值可能出現(xiàn)負(fù)數(shù), 負(fù)數(shù)會(huì)自動(dòng)截?cái)酁?0. 為了避免信息丟失, 我們需要使用更高是數(shù)據(jù)類型 cv2.CV_64F, 再通過取絕對(duì)值將其映射到 cv2.CV_8U 類型.
到此這篇關(guān)于OpenCV半小時(shí)掌握基本操作之圖像梯度的文章就介紹到這了,更多相關(guān)OpenCV圖像梯度內(nèi)容請(qǐng)搜索本站以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持本站!
版權(quán)聲明:本站文章來源標(biāo)注為YINGSOO的內(nèi)容版權(quán)均為本站所有,歡迎引用、轉(zhuǎn)載,請(qǐng)保持原文完整并注明來源及原文鏈接。禁止復(fù)制或仿造本網(wǎng)站,禁止在非www.sddonglingsh.com所屬的服務(wù)器上建立鏡像,否則將依法追究法律責(zé)任。本站部分內(nèi)容來源于網(wǎng)友推薦、互聯(lián)網(wǎng)收集整理而來,僅供學(xué)習(xí)參考,不代表本站立場(chǎng),如有內(nèi)容涉嫌侵權(quán),請(qǐng)聯(lián)系alex-e#qq.com處理。