人妖在线一区,国产日韩欧美一区二区综合在线,国产啪精品视频网站免费,欧美内射深插日本少妇

新聞動(dòng)態(tài)

Pytorch學(xué)習(xí)筆記DCGAN極簡(jiǎn)入門(mén)教程

發(fā)布日期:2022-01-21 16:02 | 文章來(lái)源:腳本之家

1.圖片分類(lèi)網(wǎng)絡(luò)

這是一個(gè)二分類(lèi)網(wǎng)絡(luò),可以是alxnet ,vgg,resnet任何一個(gè),負(fù)責(zé)對(duì)圖片進(jìn)行二分類(lèi),區(qū)分圖片是真實(shí)圖片還是生成的圖片

2.圖片生成網(wǎng)絡(luò)

輸入是一個(gè)隨機(jī)噪聲,輸出是一張圖片,使用的是反卷積層

相信學(xué)過(guò)深度學(xué)習(xí)的都能寫(xiě)出這兩個(gè)網(wǎng)絡(luò),當(dāng)然如果你寫(xiě)不出來(lái),沒(méi)關(guān)系,有人替你寫(xiě)好了

首先是圖片分類(lèi)網(wǎng)絡(luò):

簡(jiǎn)單來(lái)說(shuō)就是cnn+relu+sogmid,可以換成任何一個(gè)分類(lèi)網(wǎng)絡(luò),比如bgg,resnet等

class Discriminator(nn.Module):
 def __init__(self, ngpu):
  super(Discriminator, self).__init__()
  self.ngpu = ngpu
  self.main = nn.Sequential(
# input is (nc) x 64 x 64
nn.Conv2d(nc, ndf, 4, 2, 1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf) x 32 x 32
nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 2),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf*2) x 16 x 16
nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 4),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf*4) x 8 x 8
nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 8),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf*8) x 4 x 4
nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False),
nn.Sigmoid()
  )
 def forward(self, input):
  return self.main(input)

重點(diǎn)是生成網(wǎng)絡(luò)

代碼如下,其實(shí)就是反卷積+bn+relu

class Generator(nn.Module):
 def __init__(self, ngpu):
  super(Generator, self).__init__()
  self.ngpu = ngpu
  self.main = nn.Sequential(
# input is Z, going into a convolution
nn.ConvTranspose2d( nz, ngf * 8, 4, 1, 0, bias=False),
nn.BatchNorm2d(ngf * 8),
nn.ReLU(True),
# state size. (ngf*8) x 4 x 4
nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf * 4),
nn.ReLU(True),
# state size. (ngf*4) x 8 x 8
nn.ConvTranspose2d( ngf * 4, ngf * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf * 2),
nn.ReLU(True),
# state size. (ngf*2) x 16 x 16
nn.ConvTranspose2d( ngf * 2, ngf, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf),
nn.ReLU(True),
# state size. (ngf) x 32 x 32
nn.ConvTranspose2d( ngf, nc, 4, 2, 1, bias=False),
nn.Tanh()
# state size. (nc) x 64 x 64
  )
 def forward(self, input):
  return self.main(input)

講道理,以上兩個(gè)網(wǎng)絡(luò)都挺簡(jiǎn)單。

真正的重點(diǎn)到了,怎么訓(xùn)練

每一個(gè)step分為三個(gè)步驟:

  • 訓(xùn)練二分類(lèi)網(wǎng)絡(luò)
    1.輸入真實(shí)圖片,經(jīng)過(guò)二分類(lèi),希望判定為真實(shí)圖片,更新二分類(lèi)網(wǎng)絡(luò)
    2.輸入噪聲,進(jìn)過(guò)生成網(wǎng)絡(luò),生成一張圖片,輸入二分類(lèi)網(wǎng)絡(luò),希望判定為虛假圖片,更新二分類(lèi)網(wǎng)絡(luò)
  • 訓(xùn)練生成網(wǎng)絡(luò)
    3.輸入噪聲,進(jìn)過(guò)生成網(wǎng)絡(luò),生成一張圖片,輸入二分類(lèi)網(wǎng)絡(luò),希望判定為真實(shí)圖片,更新生成網(wǎng)絡(luò)

不多說(shuō)直接上代碼

for epoch in range(num_epochs):
 # For each batch in the dataloader
 for i, data in enumerate(dataloader, 0):
  ############################
  # (1) Update D network: maximize log(D(x)) + log(1 - D(G(z)))
  ###########################
  ## Train with all-real batch
  netD.zero_grad()
  # Format batch
  real_cpu = data[0].to(device)
  b_size = real_cpu.size(0)
  label = torch.full((b_size,), real_label, device=device)
  # Forward pass real batch through D
  output = netD(real_cpu).view(-1)
  # Calculate loss on all-real batch
  errD_real = criterion(output, label)
  # Calculate gradients for D in backward pass
  errD_real.backward()
  D_x = output.mean().item()
  ## Train with all-fake batch
  # Generate batch of latent vectors
  noise = torch.randn(b_size, nz, 1, 1, device=device)
  # Generate fake image batch with G
  fake = netG(noise)
  label.fill_(fake_label)
  # Classify all fake batch with D
  output = netD(fake.detach()).view(-1)
  # Calculate D's loss on the all-fake batch
  errD_fake = criterion(output, label)
  # Calculate the gradients for this batch
  errD_fake.backward()
  D_G_z1 = output.mean().item()
  # Add the gradients from the all-real and all-fake batches
  errD = errD_real + errD_fake
  # Update D
  optimizerD.step()
  ############################
  # (2) Update G network: maximize log(D(G(z)))
  ###########################
  netG.zero_grad()
  label.fill_(real_label)  # fake labels are real for generator cost
  # Since we just updated D, perform another forward pass of all-fake batch through D
  output = netD(fake).view(-1)
  # Calculate G's loss based on this output
  errG = criterion(output, label)
  # Calculate gradients for G
  errG.backward()
  D_G_z2 = output.mean().item()
  # Update G
  optimizerG.step()
  # Output training stats
  if i % 50 == 0:
print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD(G(z)): %.4f / %.4f'
% (epoch, num_epochs, i, len(dataloader),
errD.item(), errG.item(), D_x, D_G_z1, D_G_z2))
  # Save Losses for plotting later
  G_losses.append(errG.item())
  D_losses.append(errD.item())
  # Check how the generator is doing by saving G's output on fixed_noise
  if (iters % 500 == 0) or ((epoch == num_epochs-1) and (i == len(dataloader)-1)):
with torch.no_grad():
 fake = netG(fixed_noise).detach().cpu()
img_list.append(vutils.make_grid(fake, padding=2, normalize=True))
  iters += 1

以上就是Pytorch學(xué)習(xí)筆記DCGAN極簡(jiǎn)入門(mén)教程的詳細(xì)內(nèi)容,更多關(guān)于Pytorch學(xué)習(xí)DCGAN入門(mén)教程的資料請(qǐng)關(guān)注本站其它相關(guān)文章!

版權(quán)聲明:本站文章來(lái)源標(biāo)注為YINGSOO的內(nèi)容版權(quán)均為本站所有,歡迎引用、轉(zhuǎn)載,請(qǐng)保持原文完整并注明來(lái)源及原文鏈接。禁止復(fù)制或仿造本網(wǎng)站,禁止在非www.sddonglingsh.com所屬的服務(wù)器上建立鏡像,否則將依法追究法律責(zé)任。本站部分內(nèi)容來(lái)源于網(wǎng)友推薦、互聯(lián)網(wǎng)收集整理而來(lái),僅供學(xué)習(xí)參考,不代表本站立場(chǎng),如有內(nèi)容涉嫌侵權(quán),請(qǐng)聯(lián)系alex-e#qq.com處理。

相關(guān)文章

實(shí)時(shí)開(kāi)通

自選配置、實(shí)時(shí)開(kāi)通

免備案

全球線路精選!

全天候客戶(hù)服務(wù)

7x24全年不間斷在線

專(zhuān)屬顧問(wèn)服務(wù)

1對(duì)1客戶(hù)咨詢(xún)顧問(wèn)

在線
客服

在線客服:7*24小時(shí)在線

客服
熱線

400-630-3752
7*24小時(shí)客服服務(wù)熱線

關(guān)注
微信

關(guān)注官方微信
頂部