Python性能分析工具pyinstrument提高代碼效率
天下武功,唯快不破。
編程也不例外,你的代碼跑的快,你能快速找出代碼慢的原因,你的碼功就高。
安裝
pip install pyinstrument
簡(jiǎn)單的使用
在程序的開(kāi)始,啟動(dòng) pyinstrument 的 Profiler,結(jié)束時(shí)關(guān)閉 Profiler 并打印分析結(jié)果如下:
from pyinstrument import Profiler profiler = Profiler() profiler.start() # 這里是你要分析的代碼 profiler.stop() profiler.print()
比如這段代碼 123.py,我們可以清楚的看到是列表推導(dǎo)式比較慢:
from pyinstrument import Profiler profiler = Profiler() profiler.start() # 這里是你要分析的代碼 a = [i for i in range(100000)] b = (i for i in range(100000)) rofiler.stop() profiler.print()
上述分析需要修改源代碼,如果你使用命令行工具,就不需要修改源代碼,只需要執(zhí)行 pyinstrument xxxx.py
即可:
比如有這樣一段排序的程序 c_sort.py:
import sys import time import numpy as np arr = np.random.randint(0, 10, 10) def slow_key(el): time.sleep(0.01) return el arr = list(arr) for i in range(10): arr.sort(key=slow_key) print(arr)
這段代碼里面故意放了一句 time.sleep(0.01) 來(lái)延遲性能,看看 pyinstrument
能否識(shí)別,命令行執(zhí)行 pyinstrument c_sort.py
:
從結(jié)果來(lái)看,程序運(yùn)行了 1.313 秒,而 sleep 就運(yùn)行了 1.219 秒,很明顯是瓶頸,現(xiàn)在我們把它刪除,再看看結(jié)果:
刪除之后,性能最慢的就是 numpy 模塊的初始化代碼 __init__.py
了,不過(guò)這些代碼不是自己寫(xiě)的,而且并不是特別慢,就不需要去關(guān)心了。
分析 Flask 代碼
Web 應(yīng)用也可以使用這個(gè)來(lái)找出性能瓶頸,比如 flask,只需要在請(qǐng)求之前記錄時(shí)間,在請(qǐng)求之后統(tǒng)計(jì)時(shí)間,只需要在 flask 的請(qǐng)求攔截器里面這樣寫(xiě):
from flask import Flask, g, make_response, request app = Flask(__name__) @app.before_request def before_request(): if "profile" in request.args: g.profiler = Profiler() g.profiler.start() @app.after_request def after_request(response): if not hasattr(g, "profiler"): return response g.profiler.stop() output_html = g.profiler.output_html() return make_response(output_html)
假如有這樣一個(gè) API:
@app.route("/dosomething") def do_something(): import requests requests.get("http://google.com") return "Google says hello!"
為了測(cè)試這個(gè) API 的瓶頸,我們可以在 url 上加一個(gè)參數(shù) profile 就可以:http://127.0.0.1:5000/dosomething?profile
,哪一行代碼執(zhí)行比較慢,結(jié)果清晰可見(jiàn):
分析 Django 代碼
分析 Django 代碼也非常簡(jiǎn)單,只需要在 Django 的配置文件的 MIDDLEWARE 中添加
"pyinstrument.middleware.ProfilerMiddleware",
然后就可以在 url 上加一個(gè)參數(shù) profile 就可以:
如果你不希望所有人都能看到,只希望管理員可以看到,settings.py 可以添加這樣的代碼:
def custom_show_pyinstrument(request): return request.user.is_superuser PYINSTRUMENT_SHOW_CALLBACK = "%s.custom_show_pyinstrument" % __name__
如果不想通過(guò) url 后面加參數(shù)的方式查看性能分析,可以在 settings.py 文件中添加:
PYINSTRUMENT_PROFILE_DIR = 'profiles'
這樣,每次訪(fǎng)問(wèn)一次 Django 接口,就會(huì)將分析結(jié)果以 html 文件形式保存在 項(xiàng)目目錄下的 profiles 文件夾中。
分析異步代碼
簡(jiǎn)單的異步代碼分析:
async_example_simple.py:
import asyncio from pyinstrument import Profiler async def main(): p = Profiler() with p: print("Hello ...") await asyncio.sleep(1) print("... World!") p.print() asyncio.run(main())
復(fù)雜一些的異步代碼分析:
import asyncio import time import pyinstrument def do_nothing(): pass def busy_wait(duration): end_time = time.time() + duration while time.time() < end_time: do_nothing() async def say(what, when, profile=False): if profile: p = pyinstrument.Profiler() p.start() busy_wait(0.1) sleep_start = time.time() await asyncio.sleep(when) print(f"slept for {time.time() - sleep_start:.3f} seconds") busy_wait(0.1) print(what) if profile: p.stop() p.print(show_all=True) loop = asyncio.get_event_loop() loop.create_task(say("first hello", 2, profile=True)) loop.create_task(say("second hello", 1, profile=True)) loop.create_task(say("third hello", 3, profile=True)) loop.run_forever() loop.close()
工作原理
Pyinstrument 每 1ms 中斷一次程序,并在該點(diǎn)記錄整個(gè)堆棧。它使用 C 擴(kuò)展名和 PyEval_SetProfile 來(lái)做到這一點(diǎn),但只每 1 毫秒讀取一次讀數(shù)。你可能覺(jué)得報(bào)告的樣本數(shù)量有點(diǎn)少,但別擔(dān)心,它不會(huì)降低準(zhǔn)確性。默認(rèn)間隔 1ms 是記錄堆棧幀的下限,但如果在單個(gè)函數(shù)調(diào)用中花費(fèi)了很長(zhǎng)時(shí)間,則會(huì)在該調(diào)用結(jié)束時(shí)進(jìn)行記錄。如此有效地將這些樣本“打包”并在最后記錄。
Pyinstrument 是一個(gè)統(tǒng)計(jì)分析器,并不跟蹤,它不會(huì)跟蹤您的程序進(jìn)行的每個(gè)函數(shù)調(diào)用。相反,它每 1 毫秒記錄一次調(diào)用堆棧。與其他分析器相比,統(tǒng)計(jì)分析器的開(kāi)銷(xiāo)比跟蹤分析器低得多。
比如說(shuō),我想弄清楚為什么 Django 中的 Web 請(qǐng)求很慢。如果我使用 cProfile,我可能會(huì)得到這個(gè):
151940 function calls (147672 primitive calls) in 1.696 seconds Ordered by: cumulative time ncalls tottime percall cumtime percall filename:lineno(function) 1 0.000 0.000 1.696 1.696 profile:0(<code object <module> at 0x1053d6a30, file "./manage.py", line 2>) 1 0.001 0.001 1.693 1.693 manage.py:2(<module>) 1 0.000 0.000 1.586 1.586 __init__.py:394(execute_from_command_line) 1 0.000 0.000 1.586 1.586 __init__.py:350(execute) 1 0.000 0.000 1.142 1.142 __init__.py:254(fetch_command) 43 0.013 0.000 1.124 0.026 __init__.py:1(<module>) 388 0.008 0.000 1.062 0.003 re.py:226(_compile) 158 0.005 0.000 1.048 0.007 sre_compile.py:496(compile) 1 0.001 0.001 1.042 1.042 __init__.py:78(get_commands) 153 0.001 0.000 1.036 0.007 re.py:188(compile) 106/102 0.001 0.000 1.030 0.010 __init__.py:52(__getattr__) 1 0.000 0.000 1.029 1.029 __init__.py:31(_setup) 1 0.000 0.000 1.021 1.021 __init__.py:57(_configure_logging) 2 0.002 0.001 1.011 0.505 log.py:1(<module>)
看完是不是還是一臉懵逼,通常很難理解您自己的代碼如何與這些跟蹤相關(guān)聯(lián)。Pyinstrument 記錄整個(gè)堆棧,因此跟蹤昂貴的調(diào)用要容易得多。它還默認(rèn)隱藏庫(kù)框架,讓您專(zhuān)注于影響性能的應(yīng)用程序/模塊:
_ .___/___ _ _ _ _/_Recorded: 14:53:35 Samples: 131 /_//_/// /_\ / //_// / //_'/ // Duration: 3.131 CPU time: 0.195 /_/ v3.0.0b3 Program: examples/django_example/manage.py runserver --nothreading --noreload 3.131 <module> manage.py:2 └─ 3.118 execute_from_command_line django/core/management/__init__.py:378 [473 frames hidden] django, socketserver, selectors, wsgi... 2.836 select selectors.py:365 0.126 _get_response django/core/handlers/base.py:96 └─ 0.126 hello_world django_example/views.py:4
最后的話(huà)
本文分享了 pyinstrument 的用法,有了這個(gè)性能分析神器,以后優(yōu)化代碼可以節(jié)省很多時(shí)間了,這樣的效率神器很值得分享,畢竟人生苦短,能多點(diǎn)時(shí)間干點(diǎn)有意思的不香么?
以上就是Python性能分析工具pyinstrument提高代碼效率的詳細(xì)內(nèi)容,更多關(guān)于Python性能分析工具pyinstrument的資料請(qǐng)關(guān)注本站其它相關(guān)文章!
版權(quán)聲明:本站文章來(lái)源標(biāo)注為YINGSOO的內(nèi)容版權(quán)均為本站所有,歡迎引用、轉(zhuǎn)載,請(qǐng)保持原文完整并注明來(lái)源及原文鏈接。禁止復(fù)制或仿造本網(wǎng)站,禁止在非www.sddonglingsh.com所屬的服務(wù)器上建立鏡像,否則將依法追究法律責(zé)任。本站部分內(nèi)容來(lái)源于網(wǎng)友推薦、互聯(lián)網(wǎng)收集整理而來(lái),僅供學(xué)習(xí)參考,不代表本站立場(chǎng),如有內(nèi)容涉嫌侵權(quán),請(qǐng)聯(lián)系alex-e#qq.com處理。