人妖在线一区,国产日韩欧美一区二区综合在线,国产啪精品视频网站免费,欧美内射深插日本少妇

新聞動態(tài)

Python機(jī)器學(xué)習(xí)NLP自然語言處理基本操作電影影評分析

發(fā)布日期:2022-01-02 02:54 | 文章來源:源碼之家

概述

從今天開始我們將開啟一段自然語言處理 (NLP) 的旅程. 自然語言處理可以讓來處理, 理解, 以及運(yùn)用人類的語言, 實(shí)現(xiàn)機(jī)器語言和人類語言之間的溝通橋梁.

RNN

RNN (Recurrent Neural Network), 即循環(huán)神經(jīng)網(wǎng)絡(luò). RNN 相較于 CNN, 可以幫助我們更好的處理序列信息, 挖掘前后信息之間的聯(lián)系. 對于 NLP 這類的任務(wù), 語料的前后概率有極大的聯(lián)系. 比如: “明天天氣真好” 的概率 > “明天天氣籃球”.

權(quán)重共享

傳統(tǒng)神經(jīng)網(wǎng)絡(luò):

RNN:

RNN 的權(quán)重共享和 CNN 的權(quán)重共享類似, 不同時(shí)刻共享一個(gè)權(quán)重, 大大減少了參數(shù)數(shù)量.

計(jì)算過程

計(jì)算狀態(tài) (State)

計(jì)算輸出:

LSTM

LSTM (Long Short Term Memory), 即長短期記憶模型. LSTM 是一種特殊的 RNN 模型, 解決了長序列訓(xùn)練過程中的梯度消失和梯度爆炸的問題. 相較于普通 RNN, LSTM 能夠在更長的序列中有更好的表現(xiàn). 相比 RNN 只有一個(gè)傳遞狀態(tài) ht, LSTM 有兩個(gè)傳遞狀態(tài): ct (cell state) 和 ht (hidden state).

階段

LSTM 通過門來控制傳輸狀態(tài)。

LSTM 總共分為三個(gè)階段:

  • 忘記階段: 對上一個(gè)節(jié)點(diǎn)傳進(jìn)來的輸入進(jìn)行選擇性忘記
  • 選擇記憶階段: 將這個(gè)階段的記憶有選擇性的進(jìn)行記憶. 哪些重要則著重記錄下來, 哪些不重要, 則少記錄一些
  • 輸出階段: 決定哪些將會被當(dāng)成當(dāng)前狀態(tài)的輸出

代碼

預(yù)處理

import pandas as pd
import re
from bs4 import BeautifulSoup
from sklearn.model_selection import train_test_split
import tensorflow as tf
# 停用詞
stop_words = pd.read_csv("data/stopwords.txt", index_col=False, quoting=3, sep="\n", names=["stop_words"])
stop_words = [word.strip() for word in stop_words["stop_words"].values]
# 用pandas讀取訓(xùn)練數(shù)據(jù)
def load_data():
 # 語料
 data = pd.read_csv("data/labeledTrainData.tsv", sep="\t", escapechar="\\")
 print(data[:5])
 print("評論數(shù)量:", len(data))
 return data
def pre_process(text):
 # 去除網(wǎng)頁鏈接
 text = BeautifulSoup(text, "html.parser").get_text()
 # 去除標(biāo)點(diǎn)
 text = re.sub("[^a-zA-Z]", " ", text)
 # 分詞
 words = text.lower().split()
 # 去除停用詞
 words = [w for w in words if w not in stop_words]
 return " ".join(words)
def split_data():
 # 讀取文件
 data = pd.read_csv("data/train.csv")
 print(data.head())
 # 實(shí)例化
 tokenizer = tf.keras.preprocessing.text.Tokenizer()
 # 擬合
 tokenizer.fit_on_texts(data["review"])
 # 詞袋
 word_index = tokenizer.word_index
 print(word_index)
 print(len(word_index))
 # 轉(zhuǎn)換成數(shù)組
 sequence = tokenizer.texts_to_sequences(data["review"])
 # 填充
 character = tf.keras.preprocessing.sequence.pad_sequences(sequence, maxlen=200)
 # 標(biāo)簽轉(zhuǎn)換
 labels = tf.keras.utils.to_categorical(data["sentiment"])
 # 分割數(shù)據(jù)集
 X_train, X_test, y_train, y_test = train_test_split(character, labels, test_size=0.2,
random_state=0)
 return X_train, X_test, y_train, y_test
if __name__ == '__main__':
 # #
 # data = load_data()
 # data["review"] = data["review"].apply(pre_process)
 # print(data.head())
 #
 # # 保存
 # data.to_csv("data.csv")
 split_data()

主函數(shù)

import tensorflow as tf
from lstm_pre_processing import split_data
def main():
 # 讀取數(shù)據(jù)
 X_train, X_test, y_train, y_test = split_data()
 print(X_train[:5])
 print(y_train[:5])
 # 超參數(shù)
 EMBEDDING_DIM = 200  # embedding 維度
 optimizer = tf.keras.optimizers.RMSprop()  # 優(yōu)化器
 loss = tf.losses.CategoricalCrossentropy(from_logits=True)  # 損失
 # 模型
 model = tf.keras.Sequential([
  tf.keras.layers.Embedding(73424, EMBEDDING_DIM),
  tf.keras.layers.LSTM(200, dropout=0.2, recurrent_dropout=0.2),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(64, activation="relu"),
  tf.keras.layers.Dense(2, activation="softmax")
 ])
 model.build(input_shape=[None, 20])
 print(model.summary())
 # 組合
 model.compile(optimizer=optimizer, loss=loss, metrics=["accuracy"])
 # 訓(xùn)練
 model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=2, batch_size=32)
 # 保存模型
 model.save("movie_model.h5")
if __name__ == '__main__':
 # 主函數(shù)
 main()

輸出結(jié)果:

2021-09-14 22:20:56.974310: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0
Unnamed: 0id  sentiment  review
0  0  5814_8 1  stuff moment mj ve started listening music wat...
1  1  2381_9 1  classic war worlds timothy hines entertaining ...
2  2  7759_3 0  film starts manager nicholas bell investors ro...
3  3  3630_4 0  assumed praised film filmed opera didn read do...
4  4  9495_8 1  superbly trashy wondrously unpretentious explo...
73423
[[15958623 12368  4459622835 30152  2097  2408 35364 57143
 892  2997766 42223967266 25276157108696  1631198
2576  9850  3745 27 52  3789  9503696526 52354862
 474 38  2101 11027696  6456 22390969  5873  5376  4044
 623  1401  2069718618 92 96138  1345714 96 18
 123  1770518  3314354983  1888520 83 73983  2
  28 28635  1044  2054401  1071 85  8565  8957  7226804 46
 224447  2113  2691  5742 10  5  3217943  5045980373
  28873438389 41 23 19 56122  9253 27176
2149 19 90 57144 53  4874696  6558136  2067 10682 48
 518  1482  9  3668  1587  3786  2110 10506 25150 20744
 340 33316 17  4824  3892978 14 10150  2596766 42223
5082  4784700198  6276  5254700198  2334696 20879  5
  86 30  2583  2872 30601 30 86 28 83 73 32
  96 18  2224708 30167  7  3791216 45513
2  2310513  1860  4536  1925414  1321578  7434851696
 997  5354 57145162 30  2 91  1839]
 [ 0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  1357684
  28  3027 10371  5801 20987 21481 19800  1  3027 10371 21481 19800
1719204 49168250  7355  1547374401  5415 24  1719
  24 49168  7355  1547  3610 21481 19800123204 49168
1102  1547656213  5432  5183 61  4 66166 20 36 56
7  5183  2025116  5031 11 45782]
 [ 0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  2189  1586
2189 15  1855615400  5394  3797 23866  2892481  2892810
  22020 17820  1741231 20746  2028  1040  6089816  5555
  41772  1762 26811288  8796 45]
 [ 0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0
0  0  0 85310  1734 78  1906 78  1906  1412  1985
  78  7644  1412244  9287  7092  6374  2584  6183  3795  3080  1288
2217  3534  6005  4851  1543762  1797 26144699237  6745  7
1288  1415  9003  5623237  1669 17987874421234  1278347
9287  1609  7100  1065 75  9800  3344 76  5021 47380  3015
  14366  6523  1396851 22330  3465 20861  7106  6374340 60 19035
3089  5081  3  7  1695 10735  3582 92  6374176  8348 60
1491 11540 28826  1847464  4099 22  3561 51 22  1538  1027
  38926  2195  1966  3089 33 19894287142  6374184 37  4025
  67325 37421549 21976 28  7744  2466 31533 27  2836
1339  6374 14805  1670  4666 60 33 12]
 [ 0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  1 27 52
4639  9  5774  1545  8575855 10463  2688 21019  1542  1701653
9765  9189706  2212 18342566437  2639  4311  4504 26110
 307496893317  1 27 52587]]
[[0. 1.]
 [0. 1.]
 [0. 1.]
 [1. 0.]
 [0. 1.]]
2021-09-14 22:21:02.212681: I tensorflow/compiler/jit/xla_cpu_device.cc:41] Not creating XLA devices, tf_xla_enable_xla_devices not set
2021-09-14 22:21:02.213245: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcuda.so.1'; dlerror: /usr/lib/x86_64-linux-gnu/libcuda.so.1: file too short; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64:/usr/local/cuda/lib64/:/usr/lib/x86_64-linux-gnu
2021-09-14 22:21:02.213268: W tensorflow/stream_executor/cuda/cuda_driver.cc:326] failed call to cuInit: UNKNOWN ERROR (303)
2021-09-14 22:21:02.213305: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (5aa046a4f47b): /proc/driver/nvidia/version does not exist
2021-09-14 22:21:02.213624: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX512F
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2021-09-14 22:21:02.216309: I tensorflow/compiler/jit/xla_gpu_device.cc:99] Not creating XLA devices, tf_xla_enable_xla_devices not set
Model: "sequential"
_________________________________________________________________
Layer (type)  Output Shape  Param #
=================================================================
embedding (Embedding)  (None, None, 200)14684800  
_________________________________________________________________
lstm (LSTM)(None, 200)320800 
_________________________________________________________________
dropout (Dropout)(None, 200)0
_________________________________________________________________
dense (Dense) (None, 64) 12864  
_________________________________________________________________
dense_1 (Dense)  (None, 2)  130 
=================================================================
Total params: 15,018,594
Trainable params: 15,018,594
Non-trainable params: 0
_________________________________________________________________
None
2021-09-14 22:21:02.515404: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:116] None of the MLIR optimization passes are enabled (registered 2)
2021-09-14 22:21:02.547745: I tensorflow/core/platform/profile_utils/cpu_utils.cc:112] CPU Frequency: 2300000000 Hz
Epoch 1/2
313/313 [==============================] - 97s 302ms/step - loss: 0.5112 - accuracy: 0.7510 - val_loss: 0.3607 - val_accuracy: 0.8628
Epoch 2/2
313/313 [==============================] - 94s 300ms/step - loss: 0.2090 - accuracy: 0.9236 - val_loss: 0.3078 - val_accuracy: 0.8790

以上就是Python機(jī)器學(xué)習(xí)NLP自然語言處理基本操作電影影評分析的詳細(xì)內(nèi)容,更多關(guān)于NLP自然語言處理資料請關(guān)注本站其它相關(guān)文章!

版權(quán)聲明:本站文章來源標(biāo)注為YINGSOO的內(nèi)容版權(quán)均為本站所有,歡迎引用、轉(zhuǎn)載,請保持原文完整并注明來源及原文鏈接。禁止復(fù)制或仿造本網(wǎng)站,禁止在非www.sddonglingsh.com所屬的服務(wù)器上建立鏡像,否則將依法追究法律責(zé)任。本站部分內(nèi)容來源于網(wǎng)友推薦、互聯(lián)網(wǎng)收集整理而來,僅供學(xué)習(xí)參考,不代表本站立場,如有內(nèi)容涉嫌侵權(quán),請聯(lián)系alex-e#qq.com處理。

相關(guān)文章

實(shí)時(shí)開通

自選配置、實(shí)時(shí)開通

免備案

全球線路精選!

全天候客戶服務(wù)

7x24全年不間斷在線

專屬顧問服務(wù)

1對1客戶咨詢顧問

在線
客服

在線客服:7*24小時(shí)在線

客服
熱線

400-630-3752
7*24小時(shí)客服服務(wù)熱線

關(guān)注
微信

關(guān)注官方微信
頂部