用 Python 定義 Schema 并生成 Parquet 文件詳情
Java
和Python
實(shí)現(xiàn) Avro 轉(zhuǎn)換成Parquet
格式,chema
都是在 Avro 中定義的。這里要嘗試的是如何定義Parquet
的Schema
, 然后據(jù)此填充數(shù)據(jù)并生成Parquet
文件。
一、簡(jiǎn)單字段定義
1、定義 Schema 并生成 Parquet 文件
import pandas as pd import pyarrow as pa import pyarrow.parquet as pq # 定義 Schema schema = pa.schema([ ('id', pa.int32()), ('email', pa.string()) ]) # 準(zhǔn)備數(shù)據(jù) ids = pa.array([1, 2], type = pa.int32()) emails = pa.array(['first@example.com', 'second@example.com'], pa.string()) # 生成 Parquet 數(shù)據(jù) batch = pa.RecordBatch.from_arrays( [ids, emails], schema = schema ) table = pa.Table.from_batches([batch]) # 寫 Parquet 文件 plain.parquet pq.write_table(table, 'plain.parquet') import pandas as pd import pyarrow as pa import pyarrow . parquet as pq # 定義 Schema schema = pa . schema ( [ ( 'id' , pa . int32 ( ) ) , ( 'email' , pa . string ( ) ) ] ) # 準(zhǔn)備數(shù)據(jù) ids = pa . array ( [ 1 , 2 ] , type = pa . int32 ( ) ) emails = pa . array ( [ 'first@example.com' , 'second@example.com' ] , pa . string ( ) ) # 生成 Parquet 數(shù)據(jù) batch = pa . RecordBatch . from_arrays ( [ ids , emails ] , schema = schema ) table = pa . Table . from_batches ( [ batch ] ) # 寫 Parquet 文件 plain.parquet pq . write_table ( table , 'plain.parquet' )
2、驗(yàn)證 Parquet 數(shù)據(jù)文件
我們可以用工具 parquet-tools
來查看 plain.parquet
文件的數(shù)據(jù)和 Schema
$ parquet-tools schema plain.parquet message schema {optional int32 id;optional binary email (STRING); } $ parquet-tools cat --json plain.parquet {"id":1,"email":"first@example.com"} {"id":2,"email":"second@example.com"}
沒問題,與我們期望的一致。也可以用 pyarrow
代碼來獲取其中的 Schema
和數(shù)據(jù)
schema = pq.read_schema('plain.parquet') print(schema) df = pd.read_parquet('plain.parquet') print(df.to_json()) schema = pq . read_schema ( 'plain.parquet' ) print ( schema ) df = pd . read_parquet ( 'plain.parquet' ) print ( df . to_json ( ) )
輸出為:
schema = pq.read_schema('plain.parquet') print(schema) df = pd.read_parquet('plain.parquet') print(df.to_json()) schema = pq . read_schema ( 'plain.parquet' ) print ( schema ) df = pd . read_parquet ( 'plain.parquet' ) print ( df . to_json ( ) )
二、含嵌套字段定義
下面的 Schema
定義加入一個(gè)嵌套對(duì)象,在 address
下分 email_address
和 post_address
,Schema
定義及生成 Parquet
文件的代碼如下
import pandas as pd import pyarrow as pa import pyarrow.parquet as pq # 內(nèi)部字段 address_fields = [ ('email_address', pa.string()), ('post_address', pa.string()), ] # 定義 Parquet Schema,address 嵌套了 address_fields schema = pa.schema(j) # 準(zhǔn)備數(shù)據(jù) ids = pa.array([1, 2], type = pa.int32()) addresses = pa.array( [('first@example.com', 'city1'), ('second@example.com', 'city2')], pa.struct(address_fields) ) # 生成 Parquet 數(shù)據(jù) batch = pa.RecordBatch.from_arrays( [ids, addresses], schema = schema ) table = pa.Table.from_batches([batch]) # 寫 Parquet 數(shù)據(jù)到文件 pq.write_table(table, 'nested.parquet') import pandas as pd import pyarrow as pa import pyarrow . parquet as pq # 內(nèi)部字段 address_fields = [ ( 'email_address' , pa . string ( ) ) , ( 'post_address' , pa . string ( ) ) , ] # 定義 Parquet Schema,address 嵌套了 address_fields schema = pa . schema ( j ) # 準(zhǔn)備數(shù)據(jù) ids = pa . array ( [ 1 , 2 ] , type = pa . int32 ( ) ) addresses = pa . array ( [ ( 'first@example.com' , 'city1' ) , ( 'second@example.com' , 'city2' ) ] , pa . struct ( address_fields ) ) # 生成 Parquet 數(shù)據(jù) batch = pa . RecordBatch . from_arrays ( [ ids , addresses ] , schema = schema ) table = pa . Table . from_batches ( [ batch ] ) # 寫 Parquet 數(shù)據(jù)到文件 pq . write_table ( table , 'nested.parquet' )
1、驗(yàn)證 Parquet 數(shù)據(jù)文件
同樣用 parquet-tools
來查看下 nested.parquet
文件
$ parquet-tools schema nested.parquet message schema {optional int32 id;optional group address { optional binary email_address (STRING); optional binary post_address (STRING);} } $ parquet-tools cat --json nested.parquet {"id":1,"address":{"email_address":"first@example.com","post_address":"city1"}} {"id":2,"address":{"email_address":"second@example.com","post_address":"city2"}}
用 parquet-tools
看到的 Schama
并沒有 struct
的字樣,但體現(xiàn)了它 address
與下級(jí)屬性的嵌套關(guān)系。
用 pyarrow
代碼來讀取 nested.parquet
文件的 Schema
和數(shù)據(jù)是什么樣子
schema = pq.read_schema("nested.parquet") print(schema) df = pd.read_parquet('nested.parquet') print(df.to_json()) schema = pq . read_schema ( "nested.parquet" ) print ( schema ) df = pd . read_parquet ( 'nested.parquet' ) print ( df . to_json ( ) )
輸出:
id: int32 -- field metadata -- PARQUET:field_id: '1' address: struct<email_address: string, post_address: string> child 0, email_address: string -- field metadata -- PARQUET:field_id: '3' child 1, post_address: string -- field metadata -- PARQUET:field_id: '4' -- field metadata -- PARQUET:field_id: '2' {"id":{"0":1,"1":2},"address":{"0":{"email_address":"first@example.com","post_address":"city1"},"1":{"email_address":"second@example.com","post_address":"city2"}}} id : int32 -- field metadata -- PARQUET : field_id : '1' address : struct & lt ; email_address : string , post_address : string & gt ; child 0 , email_address : string -- field metadata -- PARQUET : field_id : '3' child 1 , post_address : string -- field metadata -- PARQUET : field_id : '4' -- field metadata -- PARQUET : field_id : '2' { "id" : { "0" : 1 , "1" : 2 } , "address" : { "0" : { "email_address" : "first@example.com" , "post_address" : "city1" } , "1" : { "email_address" : "second@example.com" , "post_address" : "city2" } } }
數(shù)據(jù)當(dāng)然是一樣的,有略微不同的是顯示的 Schema
中, address
標(biāo)識(shí)為 struct<email_address: string, post_address: string>
, 明確的表明它是一個(gè) struct
類型,而不是只展示嵌套層次。
到此這篇關(guān)于用 Python
定義 Schema
并生成 Parquet
文件詳情的文章就介紹到這了,更多相關(guān)用 Python
定義 Schema
并生成 Parquet
文件內(nèi)容請(qǐng)搜索本站以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持本站!
版權(quán)聲明:本站文章來源標(biāo)注為YINGSOO的內(nèi)容版權(quán)均為本站所有,歡迎引用、轉(zhuǎn)載,請(qǐng)保持原文完整并注明來源及原文鏈接。禁止復(fù)制或仿造本網(wǎng)站,禁止在非www.sddonglingsh.com所屬的服務(wù)器上建立鏡像,否則將依法追究法律責(zé)任。本站部分內(nèi)容來源于網(wǎng)友推薦、互聯(lián)網(wǎng)收集整理而來,僅供學(xué)習(xí)參考,不代表本站立場(chǎng),如有內(nèi)容涉嫌侵權(quán),請(qǐng)聯(lián)系alex-e#qq.com處理。