TensorFlow教程Softmax邏輯回歸識別手寫數(shù)字MNIST數(shù)據(jù)集
基于MNIST數(shù)據(jù)集的邏輯回歸模型做十分類任務(wù)
沒有隱含層的Softmax Regression只能直接從圖像的像素點推斷是哪個數(shù)字,而沒有特征抽象的過程。多層神經(jīng)網(wǎng)絡(luò)依靠隱含層,則可以組合出高階特征,比如橫線、豎線、圓圈等,之后可以將這些高階特征或者說組件再組合成數(shù)字,就能實現(xiàn)精準(zhǔn)的匹配和分類。
import tensorflow as tf import numpy as np import input_data print('Download and Extract MNIST dataset') mnist = input_data.read_data_sets('data/', one_hot=True) # one_hot=True意思是編碼格式為01編碼 print("tpye of 'mnist' is %s" % (type(mnist))) print("number of train data is %d" % (mnist.train.num_examples)) print("number of test data is %d" % (mnist.test.num_examples)) trainimg = mnist.train.images trainlabel = mnist.train.labels testimg = mnist.test.images testlabel = mnist.test.labels print("MNIST loaded") """ print("type of 'trainimg' is %s" % (type(trainimg))) print("type of 'trainlabel' is %s" % (type(trainlabel))) print("type of 'testimg' is %s" % (type(testimg))) print("type of 'testlabel' is %s"% (type(testlabel))) print("------------------------------------------------") print("shape of 'trainimg' is %s"% (trainimg.shape,)) print("shape of 'trainlabel' is %s" % (trainlabel.shape,)) print("shape of 'testimg' is %s" % (testimg.shape,)) print("shape of 'testlabel' is %s" % (testlabel.shape,)) """ x = tf.placeholder(tf.float32, [None, 784]) y = tf.placeholder(tf.float32, [None, 10]) # None is for infinite w = tf.Variable(tf.zeros([784, 10])) # 為了方便直接用0初始化,可以高斯初始化 b = tf.Variable(tf.zeros([10])) # 10分類的任務(wù),10種label,所以只需要初始化10個b pred = tf.nn.softmax(tf.matmul(x, w) + b) # 前向傳播的預(yù)測值 cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(pred), reduction_indices=[1])) # 交叉熵損失函數(shù) optm = tf.train.GradientDescentOptimizer(0.01).minimize(cost) corr = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1)) # tf.equal()對比預(yù)測值的索引和真實label的索引是否一樣,一樣返回True,不一樣返回False accr = tf.reduce_mean(tf.cast(corr, tf.float32)) init = tf.global_variables_initializer() # 全局參數(shù)初始化器 training_epochs = 100 # 所有樣本迭代100次 batch_size = 100 # 每進行一次迭代選擇100個樣本 display_step = 5 # SESSION sess = tf.Session() # 定義一個Session sess.run(init) # 在sess里run一下初始化操作 # MINI-BATCH LEARNING for epoch in range(training_epochs): # 每一個epoch進行循環(huán) avg_cost = 0. # 剛開始損失值定義為0 num_batch = int(mnist.train.num_examples/batch_size) for i in range(num_batch): # 每一個batch進行選擇 batch_xs, batch_ys = mnist.train.next_batch(batch_size) # 通過next_batch()就可以一個一個batch的拿數(shù)據(jù), sess.run(optm, feed_dict={x: batch_xs, y: batch_ys}) # run一下用梯度下降進行求解,通過placeholder把x,y傳進來 avg_cost += sess.run(cost, feed_dict={x: batch_xs, y:batch_ys})/num_batch # DISPLAY if epoch % display_step == 0: # display_step之前定義為5,這里每5個epoch打印一下 train_acc = sess.run(accr, feed_dict={x: batch_xs, y:batch_ys}) test_acc = sess.run(accr, feed_dict={x: mnist.test.images, y: mnist.test.labels}) print("Epoch: %03d/%03d cost: %.9f TRAIN ACCURACY: %.3f TEST ACCURACY: %.3f" % (epoch, training_epochs, avg_cost, train_acc, test_acc)) print("DONE")
迭代100次跑一下模型,最終,在測試集上可以達到92.2%的準(zhǔn)確率,雖然還不錯,但是還達不到實用的程度。手寫數(shù)字的識別的主要應(yīng)用場景是識別銀行支票,如果準(zhǔn)確率不夠高,可能會引起嚴(yán)重的后果。
Epoch: 095/100 loss: 0.283259882 train_acc: 0.940 test_acc: 0.922
插一些知識點,關(guān)于tensorflow中一些函數(shù)的用法
sess = tf.InteractiveSession() arr = np.array([[31, 23, 4, 24, 27, 34], [18, 3, 25, 0, 6, 35], [28, 14, 33, 22, 30, 8], [13, 30, 21, 19, 7, 9], [16, 1, 26, 32, 2, 29], [17, 12, 5, 11, 10, 15]])
在tensorflow中打印要用.eval() tf.rank(arr).eval() # 打印矩陣arr的維度 tf.shape(arr).eval() # 打印矩陣arr的大小 tf.argmax(arr, 0).eval() # 打印最大值的索引,參數(shù)0為按列求索引,1為按行求索引
以上就是TensorFlow教程Softmax邏輯回歸識別手寫數(shù)字MNIST數(shù)據(jù)集的詳細內(nèi)容,更多關(guān)于Softmax邏輯回歸MNIST數(shù)據(jù)集手寫識別的資料請關(guān)注本站其它相關(guān)文章!
版權(quán)聲明:本站文章來源標(biāo)注為YINGSOO的內(nèi)容版權(quán)均為本站所有,歡迎引用、轉(zhuǎn)載,請保持原文完整并注明來源及原文鏈接。禁止復(fù)制或仿造本網(wǎng)站,禁止在非www.sddonglingsh.com所屬的服務(wù)器上建立鏡像,否則將依法追究法律責(zé)任。本站部分內(nèi)容來源于網(wǎng)友推薦、互聯(lián)網(wǎng)收集整理而來,僅供學(xué)習(xí)參考,不代表本站立場,如有內(nèi)容涉嫌侵權(quán),請聯(lián)系alex-e#qq.com處理。