人妖在线一区,国产日韩欧美一区二区综合在线,国产啪精品视频网站免费,欧美内射深插日本少妇

新聞動態(tài)

MySQL Shell import_table數(shù)據導入的實現(xiàn)

發(fā)布日期:2022-02-08 16:33 | 文章來源:源碼之家

1. import_table介紹

上期技術分享我們介紹了MySQL Load Data的4種常用的方法將文本數(shù)據導入到MySQL,這一期我們繼續(xù)介紹另一款更加高效的數(shù)據導入工具,MySQL Shell 工具集中的import_table,該工具的全稱是Parallel Table Import Utility,顧名思義,支持并發(fā)數(shù)據導入,該工具在MySQL Shell 8.0.23版本后,功能更加完善, 以下列舉該工具的核心功能

  • 基本覆蓋了MySQL Data Load的所有功能,可以作為替代品使用
  • 默認支持并發(fā)導入(支持自定義chunk大小)
  • 支持通配符匹配多個文件同時導入到一張表(非常適用于相同結構數(shù)據匯總到一張表)
  • 支持限速(對帶寬使用有要求的場景,非常合適)
  • 支持對壓縮文件處理
  • 支持導入到5.7及以上MySQL

2. Load Data 與 import table功能示例

該部分針對import table和Load Data相同的功能做命令示例演示,我們依舊以導入employees表的示例數(shù)據為例,演示MySQL Load Data的綜合場景

  • 數(shù)據自定義順序導入
  • 數(shù)據函數(shù)處理
  • 自定義數(shù)據取值
## 示例數(shù)據如下
[root@10-186-61-162 tmp]# cat employees_01.csv
"10001","1953-09-02","Georgi","Facello","M","1986-06-26"
"10003","1959-12-03","Parto","Bamford","M","1986-08-28"
"10002","1964-06-02","Bezalel","Simmel","F","1985-11-21"
"10004","1954-05-01","Chirstian","Koblick","M","1986-12-01"
"10005","1955-01-21","Kyoichi","Maliniak","M","1989-09-12"
"10006","1953-04-20","Anneke","Preusig","F","1989-06-02"
"10007","1957-05-23","Tzvetan","Zielinski","F","1989-02-10"
"10008","1958-02-19","Saniya","Kalloufi","M","1994-09-15"
"10009","1952-04-19","Suma

2.1 用Load Data方式導入數(shù)據

具體參數(shù)含義不做說明,需要了解語法規(guī)則及含義可查看系列上一篇文章<MySQL Load Data的多種用法>

load data infile '/data/mysql/3306/tmp/employees_01.csv'
into table employees.emp
character set utf8mb4
fields terminated by ','
enclosed by '"'
lines terminated by '\n'
(@C1,@C2,@C3,@C4,@C5,@C6)
set emp_no=@C1,
    birth_date=@C2,
    first_name=upper(@C3),
    last_name=lower(@C4),
    full_name=concat(first_name,' ',last_name),
    gender=@C5,
    hire_date=@C6 ,
    modify_date=now(),
    delete_flag=if(hire_date<'1988-01-01','Y','N');

2.2 用import_table方式導入數(shù)據

util.import_table(
    [
        "/data/mysql/3306/tmp/employees_01.csv",
    ],
    {
        "schema": "employees", 
        "table": "emp",
        "dialect": "csv-unix",
        "skipRows": 0,
        "showProgress": True,
        "characterSet": "utf8mb4",
        "columns": [1,2,3,4,5,6],                   ## 文件中多少個列就用多少個序號標識就行
        "decodeColumns": {
            "emp_no":       "@1",                   ## 對應文件中的第1列
            "birth_date":   "@2",                   ## 對應文件中的第2個列
            "first_name":   "upper(@3)",            ## 對應文件中的第3個列,并做轉為大寫的處理
            "last_name":    "lower(@4)",            ## 對應文件中的第4個列,并做轉為大寫的處理
            "full_name":    "concat(@3,' ',@4)",    ## 將文件中的第3,4列合并成一列生成表中字段值
            "gender":       "@5",                   ## 對應文件中的第5個列
            "hire_date":    "@6",                   ## 對應文件中的第6個列
            "modify_date":  "now()",                ## 用函數(shù)生成表中字段值
            "delete_flag":  "if(@6<'1988-01-01','Y','N')"  ## 基于文件中第6列做邏輯判斷,生成表中對應字段值
        }
    })

3. import_table特定功能

3.1 多文件導入(模糊匹配)

## 在導入前我生成好了3分單獨的employees文件,導出的結構一致
[root@10-186-61-162 tmp]# ls -lh
總用量 1.9G
-rw-r----- 1 mysql mysql  579 3月  24 19:07 employees_01.csv
-rw-r----- 1 mysql mysql  584 3月  24 18:48 employees_02.csv
-rw-r----- 1 mysql mysql  576 3月  24 18:48 employees_03.csv
-rw-r----- 1 mysql mysql 1.9G 3月  26 17:15 sbtest1.csv
## 導入命令,其中對對文件用employees_*做模糊匹配
util.import_table(
    [
        "/data/mysql/3306/tmp/employees_*",
    ],
    {
        "schema": "employees", 
        "table": "emp",
        "dialect": "csv-unix",
        "skipRows": 0,
        "showProgress": True,
        "characterSet": "utf8mb4",
        "columns": [1,2,3,4,5,6],                   ## 文件中多少個列就用多少個序號標識就行
        "decodeColumns": {
            "emp_no":       "@1",                   ## 對應文件中的第1列
            "birth_date":   "@2",                   ## 對應文件中的第2個列
            "first_name":   "upper(@3)",            ## 對應文件中的第3個列,并做轉為大寫的處理
            "last_name":    "lower(@4)",            ## 對應文件中的第4個列,并做轉為大寫的處理
            "full_name":    "concat(@3,' ',@4)",    ## 將文件中的第3,4列合并成一列生成表中字段值
            "gender":       "@5",                   ## 對應文件中的第5個列
            "hire_date":    "@6",                   ## 對應文件中的第6個列
            "modify_date":  "now()",                ## 用函數(shù)生成表中字段值
            "delete_flag":  "if(@6<'1988-01-01','Y','N')"  ## 基于文件中第6列做邏輯判斷,生成表中對應字段值
        }
    })
    
## 導入命令,其中對要導入的文件均明確指定其路徑
util.import_table(
    [
        "/data/mysql/3306/tmp/employees_01.csv",
        "/data/mysql/3306/tmp/employees_02.csv",
        "/data/mysql/3306/tmp/employees_03.csv"
    ],
    {
        "schema": "employees", 
        "table": "emp",
        "dialect": "csv-unix",
        "skipRows": 0,
        "showProgress": True,
        "characterSet": "utf8mb4",
        "columns": [1,2,3,4,5,6],                   ## 文件中多少個列就用多少個序號標識就行
        "decodeColumns": {
            "emp_no":       "@1",                   ## 對應文件中的第1列
            "birth_date":   "@2",                   ## 對應文件中的第2個列
            "first_name":   "upper(@3)",            ## 對應文件中的第3個列,并做轉為大寫的處理
            "last_name":    "lower(@4)",            ## 對應文件中的第4個列,并做轉為大寫的處理
            "full_name":    "concat(@3,' ',@4)",    ## 將文件中的第3,4列合并成一列生成表中字段值
            "gender":       "@5",                   ## 對應文件中的第5個列
            "hire_date":    "@6",                   ## 對應文件中的第6個列
            "modify_date":  "now()",                ## 用函數(shù)生成表中字段值
            "delete_flag":  "if(@6<'1988-01-01','Y','N')"  ## 基于文件中第6列做邏輯判斷,生成表中對應字段值
        }
    })

3.2 并發(fā)導入

在實驗并發(fā)導入前我們創(chuàng)建一張1000W的sbtest1表(大約2G數(shù)據),做并發(fā)模擬,import_table用threads參數(shù)作為并發(fā)配置, 默認為8個并發(fā).

## 導出測試需要的sbtest1數(shù)據
[root@10-186-61-162 tmp]# ls -lh
總用量 1.9G
-rw-r----- 1 mysql mysql  579 3月  24 19:07 employees_01.csv
-rw-r----- 1 mysql mysql  584 3月  24 18:48 employees_02.csv
-rw-r----- 1 mysql mysql  576 3月  24 18:48 employees_03.csv
-rw-r----- 1 mysql mysql 1.9G 3月  26 17:15 sbtest1.csv
## 開啟threads為8個并發(fā)
util.import_table(
    [
        "/data/mysql/3306/tmp/sbtest1.csv",
    ],
    {
        "schema": "demo", 
        "table": "sbtest1",
        "dialect": "csv-unix",
        "skipRows": 0,
        "showProgress": True,
        "characterSet": "utf8mb4",
        "threads": "8"
    })

3.3 導入速率控制

可以通過maxRatethreads來控制每個并發(fā)線程的導入數(shù)據,如,當前配置線程為4個,每個線程的速率為2M/s,則最高不會超過8M/s

util.import_table(
    [
        "/data/mysql/3306/tmp/sbtest1.csv",
    ],
    {
        "schema": "demo", 
        "table": "sbtest1",
        "dialect": "csv-unix",
        "skipRows": 0,
        "showProgress": True,
        "characterSet": "utf8mb4",
        "threads": "4",
        "maxRate": "2M"
    })

3.4 自定義chunk大小

默認的chunk大小為50M,我們可以調整chunk的大小,減少事務大小,如我們將chunk大小調整為1M,則每個線程每次導入的數(shù)據量也相應減少

util.import_table(
    [
        "/data/mysql/3306/tmp/sbtest1.csv",
    ],
    {
        "schema": "demo", 
        "table": "sbtest1",
        "dialect": "csv-unix",
        "skipRows": 0,
        "showProgress": True,
        "characterSet": "utf8mb4",
        "threads": "4",
        "bytesPerChunk": "1M",
        "maxRate": "2M"
    })

4. Load Data vs import_table性能對比

  • 使用相同庫表
  • 不對數(shù)據做特殊處理,原樣導入
  • 不修改參數(shù)默認值,只指定必備參數(shù)
-- Load Data語句
load data infile '/data/mysql/3306/tmp/sbtest1.csv'
into table demo.sbtest1
character set utf8mb4
fields terminated by ','
enclosed by '"'
lines terminated by '\n'
-- import_table語句
util.import_table(
    [
        "/data/mysql/3306/tmp/sbtest1.csv",
    ],
    {
        "schema": "demo", 
        "table": "sbtest1",
        "dialect": "csv-unix",
        "skipRows": 0,
        "showProgress": True,
        "characterSet": "utf8mb4"
    })

可以看到,Load Data耗時約5分鐘,而import_table則只要不到一半的時間即可完成數(shù)據導入,效率高一倍以上(虛擬機環(huán)境磁盤IO能力有限情況下)

5. 技術總結

  • import_table包含了Load Data幾乎所有的功能
  • import_table導入的效率比Load Data更高
  • import_table支持對導入速度,并發(fā)以及每次導入的數(shù)據大小做精細控制
  • import_table的導入進度報告更加詳細,便于排錯及時間評估,包括
    • 導入速度
    • 導入總耗時
    • 每批次導入的數(shù)據量,是否存在Warning等等
    • 導入最終的匯總報告

到此這篇關于MySQL import_table數(shù)據導入的實現(xiàn)的文章就介紹到這了,更多相關MySQL import_table數(shù)據導入內容請搜索本站以前的文章或繼續(xù)瀏覽下面的相關文章希望大家以后多多支持本站!

香港服務器租用

版權聲明:本站文章來源標注為YINGSOO的內容版權均為本站所有,歡迎引用、轉載,請保持原文完整并注明來源及原文鏈接。禁止復制或仿造本網站,禁止在非www.sddonglingsh.com所屬的服務器上建立鏡像,否則將依法追究法律責任。本站部分內容來源于網友推薦、互聯(lián)網收集整理而來,僅供學習參考,不代表本站立場,如有內容涉嫌侵權,請聯(lián)系alex-e#qq.com處理。

實時開通

自選配置、實時開通

免備案

全球線路精選!

全天候客戶服務

7x24全年不間斷在線

專屬顧問服務

1對1客戶咨詢顧問

在線
客服

在線客服:7*24小時在線

客服
熱線

400-630-3752
7*24小時客服服務熱線

關注
微信

關注官方微信
頂部