PostgreSQL數(shù)據(jù)庫中如何保證LIKE語句的效率(推薦)
在任何數(shù)據(jù)庫中使用LIKE語句往往都是令人頭疼的一件事,因?yàn)椴簧儆脩舭l(fā)現(xiàn)LIKE語句效率極低,查看執(zhí)行計(jì)劃后發(fā)現(xiàn)原來沒有走索引,那么在Postgresql數(shù)據(jù)中LIKE語句的執(zhí)行效率又是怎樣的呢?我們又該如何提高LIKE語句的執(zhí)行效率呢?
實(shí)驗(yàn)環(huán)境
數(shù)據(jù)庫環(huán)境: PostgreSQL 12.3 X86_64
創(chuàng)建虛擬環(huán)境:
postgres=# create database testdb01 owner highgo; CREATE DATABASE postgres=# \c testdb01 highgo testdb01=# create table testliketb01 (userid int primary key,username varchar(20),password varchar(60),description text); CREATE TABLE
為何保證測(cè)試效果更直觀,我們使用隨機(jī)數(shù)據(jù)填充一下該表
testdb01=# insert into testliketb01 select generate_series(1,500000),split_part('張三,李四,王五,小明,小紅',',',(random()*(5-1)+1)::int),md5((random()*(5-1)+1)::varchar),split_part('highgo,highgo02,highgo03',',',(random()*(3-1)+1)::int);
至此,虛擬數(shù)據(jù)創(chuàng)建完畢。
testdb01=# select * from testliketb01 limit 10; userid | username |password| description --------+----------+----------------------------------+------------- 1 | 王五| 4f2bca371b42abd1403d5c20c4542dff | highgo 2 | 李四| 2a978c605188770c5ed162889fff189e | highgo02 3 | 李四| f5d129ab728b72ac6f663fe544bc7c16 | highgo 4 | 小明| 53134fa1022c58e65168b6aa1fbe5e39 | highgo02 5 | 王五| 2cf9abb2a8b676a626fa2c317d401ed8 | highgo02 6 | 王五| 2247a0cfda1f2819554d6e8e454622eb | highgo02 7 | 張三| 59dfdc680c17533dfba1c72c9ce0bf76 | highgo02 8 | 王五| 87db4258236a3826259dcc3e7cb5fc63 | highgo02 9 | 王五| baaf7a2f7027df9aaeb665121432b6e2 | highgo02 10 | 王五| 2f8fb36b3227c795b111b9bd5b031a76 | highgo02 (10 rows) 此時(shí)數(shù)據(jù)庫的狀態(tài): testdb01=# \l+ testdb01 List of databases Name| Owner| Encoding |Collate|Ctype| Access privileges | Size| Tablespace | Description ----------+--------+----------+-------------+-------------+-------------------+-------+------------+------------- testdb01 | highgo | UTF8| en_US.UTF-8 | en_US.UTF-8 || 59 MB | pg_default | (1 row)
簡(jiǎn)單LIKE語句查詢:
testdb01=# explain analyze select * from testliketb01 where username like '王%'; QUERY PLAN ----------------------------------------------------------------------------------------------------------------------- Seq Scan on testliketb01(cost=0.00..11405.00 rows=125350 width=52) (actual time=0.014..177.571 rows=124952 loops=1) Filter: ((username)::text ~~ '王%'::text) Rows Removed by Filter: 375048 Planning Time: 0.121 ms Execution Time: 190.554 ms (5 rows)
結(jié)論:LIKE查詢沒有走索引 創(chuàng)建普通索引: testdb01=# create index idx_testliketb01_username on testliketb01(username); CREATE INDEX 執(zhí)行三遍:analyze testliketb01 ; 重新執(zhí)行LIKE語句,發(fā)現(xiàn)還是沒有走索引 創(chuàng)建包含operator class的索引: testdb01=# create index idx_testliketb01_username on testliketb01(username varchar_pattern_ops); CREATE INDEX 執(zhí)行三遍:analyze testliketb01 ;
testdb01=# explain analyze select * from testliketb01 where username like '王%'; QUERY PLAN ------------------------------------------------------------------------------------------------------------------------------------------------- Bitmap Heap Scan on testliketb01(cost=2665.26..9387.14 rows=125350 width=52) (actual time=31.383..94.745 rows=124952 loops=1) Filter: ((username)::text ~~ '王%'::text) Heap Blocks: exact=5155 ->Bitmap Index Scan on idx_testliketb01_username(cost=0.00..2633.92 rows=125350 width=0) (actual time=29.730..29.730 rows=124952 loops=1) Index Cond: (((username)::text ~>=~ '王'::text) AND ((username)::text ~<~ '玌'::text)) Planning Time: 0.111 ms Execution Time: 107.030 ms (7 rows)
結(jié)論:在創(chuàng)建完普通索引并收集統(tǒng)計(jì)信息后數(shù)據(jù)庫在執(zhí)行LIKE語句時(shí)有可能仍然無法使用索引。在創(chuàng)建完帶有操作類的索引收集完統(tǒng)計(jì)信息后,執(zhí)行LIKE語句可以看到正常使用索引,且執(zhí)行效率有了不小提升。
PS:operator class是Postgresql新版中創(chuàng)建索引的新選項(xiàng),旨在通過制定索引的操作類可以更精準(zhǔn)的收集統(tǒng)計(jì)信息。
為了更精準(zhǔn)的收集統(tǒng)計(jì)信息,我們也可以在初始化或者創(chuàng)建數(shù)據(jù)庫時(shí)將Collate設(shè)置為"C",這也是Postgresql數(shù)據(jù)中常用的優(yōu)化手段。 我們來測(cè)試一下將Collate設(shè)置為"C"的效果:
testdb01=# create database testdb02 with TEMPLATE template0LC_COLLATE='C'LC_CTYPE ='C' owner highgo; CREATE DATABASE testdb02=# \l+ testdb02 List of databases Name| Owner| Encoding | Collate | Ctype | Access privileges | Size| Tablespace | Description ----------+--------+----------+---------+-------+-------------------+-------+------------+------------- testdb02 | highgo | UTF8| C| C|| 59 MB | pg_default | (1 row) testdb02=# create index idx_testliketb01_username on testliketb01(username); CREATE INDEX testdb02=# analyze testliketb01 ; ANALYZE testdb02=# analyze testliketb01 ; ANALYZE testdb02=# analyze testliketb01 ; ANALYZE testdb02=#explain analyze select * from testliketb01 where username like '王%'; QUERY PLAN ------------------------------------------------------------------------------------------------------------------------------------------------- Bitmap Heap Scan on testliketb01(cost=2680.26..9410.67 rows=126033 width=52) (actual time=35.262..99.052 rows=124992 loops=1) Filter: ((username)::text ~~ '王%'::text) Heap Blocks: exact=5155 ->Bitmap Index Scan on idx_testliketb01_username(cost=0.00..2648.75 rows=126033 width=0) (actual time=33.920..33.920 rows=124992 loops=1) Index Cond: (((username)::text >= '王'::text) AND ((username)::text < '玌'::text)) Planning Time: 0.276 ms Execution Time: 111.578 ms (7 rows)
結(jié)論:創(chuàng)建數(shù)據(jù)庫時(shí)將Collate設(shè)置為"C",即便索引為普通索引,LIKE語句也可以使用索引提升查詢效率。
優(yōu)化建議:
1、初始化數(shù)據(jù)庫或者創(chuàng)建數(shù)據(jù)庫時(shí)將Collate設(shè)置為"C"。
2、創(chuàng)建索引時(shí)指定索引的操作類。(text_pattern_ops、varchar_pattern_ops和 bpchar_pattern_ops分別支持類型text、varchar和 char上的B-tree索引)
3、優(yōu)化思路,對(duì)于%X的列無法使用索引,可以新增一列 反存儲(chǔ)列,將%X改為X%。
4、創(chuàng)建覆蓋索引,保證復(fù)雜SQL中可以盡可能調(diào)用該索引。
5、調(diào)整業(yè)務(wù)邏輯,盡量不用LIKE語句或者調(diào)整LIKE語句在WHERE中的位置。
到此這篇關(guān)于PostgreSQL數(shù)據(jù)庫中如何保證LIKE語句的效率的文章就介紹到這了,更多相關(guān)PostgreSQL保證LIKE語句的效率內(nèi)容請(qǐng)搜索本站以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持本站!
版權(quán)聲明:本站文章來源標(biāo)注為YINGSOO的內(nèi)容版權(quán)均為本站所有,歡迎引用、轉(zhuǎn)載,請(qǐng)保持原文完整并注明來源及原文鏈接。禁止復(fù)制或仿造本網(wǎng)站,禁止在非www.sddonglingsh.com所屬的服務(wù)器上建立鏡像,否則將依法追究法律責(zé)任。本站部分內(nèi)容來源于網(wǎng)友推薦、互聯(lián)網(wǎng)收集整理而來,僅供學(xué)習(xí)參考,不代表本站立場(chǎng),如有內(nèi)容涉嫌侵權(quán),請(qǐng)聯(lián)系alex-e#qq.com處理。